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Series on engineering application of 
fracture mechanics 

Fracture mechanics technology has received considerable attention in recent 
years and has advanced to the stage where it can be employed in engineering 
design to prevent against the brittle fracture of high-strength materials and 
highly constrained structures. While research continued in an attempt to 
extend the basic concept to the lower strength and higher toughness materials, 
the technology advanced rapidly to establish material specifications, design 
rules, quality control and inspection standards, code requirements, and 
regulations for safe operation. Among these are the fracture toughness 
testing procedures of the American Society of Testing Materials (ASTM), 
the American Society of Mechanical Engineers (ASME) Boiler and Pressure 
Vessel Codes for the design of nuclear reactor components, etc. Step-by-step 
fracture detection and prevention procedures are also being developed by the 
industry, government and university to guide and regulate the design of 
engineering products. This involves the interaction of individuals from the 
different sectors of the society that often presents a problem in communication. 
The transfer of new research findings to the users is now becoming a slow, 
tedious and costly process. 

One of the practical objectives of this series on Engineering Application of 
Fracture Mechanics is to provide a vehicle for presenting the experience of 
real situations by those who have been involved in applying the basic knowledge 
of fracture mechanics in practice. It is time that the subject should be presented 
in a systematic way to the practicing engineers as well as to the students in 
universities, at least to all those who are likely to bear a responsibility for safe 
and economic design. Even though the current theory of linear elastic fracture 
mechanics (LEFM) is limited to brittle fracture behavior, it has already 
provided a remarkable improvement over the conventional methods not 
accounting for initial defects that are inevitably present in all materials and 
structures. The potential of the fracture mechanics technology, however, has 
not been fully recognized. There remains much to be done in constructing 
a quantitative theory of material damage that can reliably translate small 
specimen data to the design of large size structural components. The work of 
the physical metallurgists and the fracture mechanicians should also be 
brought together by reconciling the details of the material microstructure 
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with the assumed continua of the computational methods. It is with the aim 
of developing a wider appreciation of the fracture mechanics technology 
applied to the design of engineering structures such as aircrafts, ships, bridges, 
pavements, pressure vessels, off-shore structures, pipelines, etc. that this 
series is being developed. 

Undoubtedly, the successful application of any technology must rely on 
the soundness of the underlying basic concepts and mathematical models and 
how they reconcile with each other. This· goal has been accomplished to a 
large extent by the book series on Mechanics of Fracture started in 1972. 
The seven published volumes offer a wealth of information on the effects of 
defects or cracks in cylindrical bars, thin and thick plates, shells, composites 
and solids in three dimensions. Both static and dynamic loads are considered. 
Each volume contains an introductory chapter that illustrates how the strain 
energy criterion can be used to analyze the combined influence of defect 
size, component geometry and size, loading, material properties, etc. The 
criterion is particularly effective for treating mixed mode fracture where the 
crack propagates in a non-self similar fashion. One of the major difficulties 
that continuously perplex the practitioners in fracture mechanics is the 
selection of an appropriate fracture criterion without which no reliable 
prediction of failure could be made. This requires much discernment, judge· 
ment and experience. General conclusion based on the agreement of theory 
and experiment for a limited number of physical phenomena should be 
avoided. 

Looking into the future the rapid advancement of modern technology will 
require more sophisticated concepts in design. The micro-chips used widely 
in electronics and advanced composites developed for aerospace applications 
are just some of the more well-known examples. The more efficient use of 
materials in previously unexperienced environments is no doubt needed. 
Fracture mechanics should be extended beyond the range of LEFM. To be 
better understood is the entire process of material damage that includes 
crack initiation, slow growth and eventual termination by fast crack propa­
gation. Material behavior characterized from the uniaxial tensile tests must 
be related to more complicated stress states. These difficulties could be 
overcome by unifying metallurgical and fracture mechanics studies, particularly 
in assessing the results with consistency. 

This series is therefore offered to emphasize the applications of fracture 
mechanics technology that could be employed to assure the safe behavior of 
engineering products and structures. Unexpected failures mayor may not be 
critical in themselves but they can often be annoying, time-wasting and 
discrediting of the technical community. 

Bethlehem, Pennsylvania 
1984 

G.C. Sih 
Editor-in·Chief 
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Editor-in-Chiefs Preface 

Following Volumes III and IV that dealt with the fracture mechanics of 
concrete emphasizing both material testing and structural application in 
general, it was felt that specimen size and loading rate effects for concrete 
require further attention. The only criterion that has thus far successfully 
linearized the highly nonlinear crack growth data of concrete is the strain 
energy density theory. In particular, the crack growth resistance curves 
plotting the strain energy density factor versus crack growth known as the 
SR·curves are straight lines as specimen size and loading steps or rates are 
altered. This allows the extrapolation of data and provides a useful design 
methodology. 

This book is unique in that it is devoted specifically to the application of 
the strain energy density theory to civil engineering structural members 
made of concrete. Analyzed in detail is the strain softening behavior of 
concrete for a variety of different components including the influence of 
steel reinforcement. Permanent damage of the material is accounted for each 
increment of loading by invoking the mechanism of elastic unloading. This 
assumption is justified in concrete structures where the effective stiffness 
depends primarily on the crack growth rate and load history. Crack growth 
data are presented in terms of SR-curves with emphases placed on scaling 
specimen size which alone can change the mode of failure from plastic 
collapse to brittle fracture. Loading rate effects can also be scaled to control 
failure by yielding and fracture. 

Because the materials in this book are mostly new, they should be of 
interest to those in research and application. The concept of SR-curves will 
have a far reaching consequence on concrete technology, particularly on 
future code requirements and regulations. 

Bethlehem, Pennsylvania 
1984 

IX 

G.C. Sih 
Editor-in-Chief 
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A uthor's Preface 

Structural elements can fail in many different ways. The ultimate load 
condition may be reached by a combination of plastic flow, slow or fast 
crack propagation, depending on the material strength, ductility and tough­
ness, and the size of the structural components. Highly constrained and/or 
brittle materials may result in sudden crack formation and unstable crack 
propagation, whereas less constrained and/or more ductile materials are more 
likely to fail progressively by plastic yielding. In those situations, the presence 
of initial cracks do not play an important role in the failure process. 

In many cases, however, the terminal condition is preceded by slow crack 
growth that continues even into the stage of global structure failure. There 
are other situations where slow crack growth may occur simultaneously with 
plastic flow and the final failure can still be catastrophic. 

The current fracture mechanics literature contains a multitude of ideas, 
concepts, and criteria, that are not always consistent one with the other. 
Plastic Limit Analysis and Linear Elastic Fracture Mechanics are two theories 
that address failure of structural components with very ductile and very 
brittle behavior, respectively. They are unable to account for the slow crack 
growth and the softening behavior in concrete structures aside from the 
effect of material heterogeneity that is connected with the brittleness of 
concrete. 

Remarkable scale effects have been found in fracture toughness testing 
of cementitious materials. The mechanical behavior can change from the very 
ductile to the very brittle simply by altering the size of geometrically similar 
specimens. Large specimens can fail by rapid crack propagation within the 
linear elastic range before softening takes place. On the other hand, small 
specimens tend to fail in a ductile manner with slow crack growth and 
softening leading to a complete stress relaxation. 

In this book, a crack growth and material damage model is used in con­
junction with the strain energy density theory of Sih to analyze the integrity 
of concrete structural members. A bilinear softening constitutive law is 
applied while the progressive damage of material is accounted for by changing 
the material elastic modulus and crack growth for each load step. The finite 
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element method is employed consistently and repeatedly in both the stress 
and failure analysis. 

As a consequence of the strain energy density theory, the rate of change 
of the strain energy density factor dS with respect to the crack growth rate 
do remained as a constant for each loading increment and specimen size, 
i.e., dS/do = constant. The straight line relationship between S and a known 
as the SR-curve rotates in a counterclockwise direction around a common 
point as the load increment is increased. These straight lines tend to shift 
parallel with one another when the size of geometrically similar specimens 
is increased. Hence, the influence of load increment and specimen size on 
sub critical crack growth and critical crack size for a given material can be 
easily determined from uniaxial data. Depending on the combined effect of 
structural size and geometry, crack growth may either lead to catastrophic 
failure or to crack arrest. Numerous examples are provided to illustrate 
how the strain energy density theory can be applied to predict different 
failure modes in concrete ranging from plastic collapse to brittle fracture. 

The book is divided into eight chapters. The first chapter provides an 
historical review of the theories of Plastic limit Analysis and Unear Elastic 
Fracture Mechanics. Independent of the material, they describe the extreme 
failure conditions of very small and very large structures, respectively. The 
intermediate stages are not covered by these two models. Mixed mode crack 
growth criteria are discussed briefly. The angle of crack initiation and the 
critical stress conditions are obtained by applying different crack growth 
criteria. 

In the second chapter, microcracking, damage and strain-softening are 
discussed in connection with concrete-like materials. The fracture loci in 
the stress-intensity factor plane, KI versus Kn , are related to the failure 
envelopes in the Mohr's plane, a versus T. The strain energy density theory 
is proposed as a basis for explaining such phenomena. 

A cracked beam subjected to three-point bending is depicted in the third 
chapter for determining the crack growth rates of different concrete-like 
materials. SR-curves are developed for studying the load increment and 
specimen size effects. 

In the fourth chapter, SR-curves are developed from the uniaxial data for 
a center cracked slab in tension with different initial crack lengths. The 
failure of a slab under eccentric compression is investigated in the fifth 
chapter. The edge crack is shown to grow with a decreasing rate as the zone 
of compressive stress is approached. A reinforced concrete beam is solved 
in the sixth chapter to investigate the influence of reinforcement on crack 
growth and material damage. An example involving crack growth and material 
damage for a panel subjected to seismic loadings is provided in the seventh 
chapter. The effects of loading step and size scaling of geometrically similar 
structural components are assessed quantitatively in chapters 3 to 7. The 
transition from plastic collapse to brittle fracture is accomplished by varying 
the size scale and is predicted consistently by the strain energy density theory. 
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In the eighth and final chapter, the problem of extrapolating experimental 
data from small fracture specimens to large structures is presented. A simple 
presentation of the aforementioned ductile-brittle transition due to specimen 
size is made by application of the concept of model scaling and physical 
similitude. Most of the size effects on fracture toughness and tensile strength 
of concrete which appeared in the literature for the last twenty years are 
reinterpreted in terms of dimensional analysis and statistics. The non-linearity 
in the constitutive stress-strain relation of the material and the shape of the 
preexisting defects are also considered. The damage model based on the strain 
energy density theory in this book is then compared with the cohesive model. 
The process zone at the crack tip of a concrete-like material may be simulated 
by assuming a damage zone in front of the stress-free crack tip, or by intro­
ducing a cohesive force distribution behind a fictitious crack tip. 

This work was initiated at the Institute of Fracture and Solid Mechanics, 
Lehigh University, while the author was on sabbatical leave from the University 
of Bologna. It was completed at the Istituto di Scienza delle Costruzioni at 
the University of Bologna. The author wishes to express his gratitude to 
Professor George C. Sih for the very stimulating and fruitful discussions he 
had with him at Lehigh University and for providing valuable comments and 
support during the writing of this book. 

Thanks are due to the Institute Secretaries, Mrs. Barbara DeLazaro and 
Mrs. Constance Weaver, for typing the manuscript and other assistance they 
provided during my stay at Lehigh. The preparation of the drawings by Miss 
Thea Bariselli at the Studio T-Line was greatly appreciated. 

I am also grateful for the understanding and support provided by my wife 
Mariagiulia while I worked on this volume. 

Istituto di Scienza delle Costruzioni 
University of Bologna, Italy 
June 1984 

Alberto Carpinteri 
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Historical review: strength ofmaterials and 
fracture mechanics 

1.1. Classical theories of failure 

1 

Plasticity criteria. The mechanical behavior of most engineering materials 
under uniaxial tension consists of four stages as shown in Figure 1.1. They are 
linear elastic, strain-hardening, perfectly plastic and strain-softening. The 
strain·hardening and softening stage may be linearized in order to make the 
computations easier, Figure 1.1. Such an approximation does not lead to any 
serious loss in solution accuracy. The contribution of the individual stages, 
however, can vary over a wide range. For example, when a steel specimen 
is subjected to uniaxial tension, the linear elastic range is usually followed by 
perfect plasticity and then by strain-hardening. The strain-softening behavior 
is not significant and is represented by a nearly vertical drop in the stress­
strain diagram, Figure 1.2(a). For a concrete specimen, the linear elastic 
range is immediately followed by strain-softening while the intermediate 
stages do not appear, Figure 1.2(b). Note that the elastic modulus for concrete 
is much lower than that for steel as well as the strain-softening modulus. 
These observations exhibit that the energy absorption* properties of steel 
and concrete vary at different stages. The former during the plastic and 
hardening stages, the latter during the softening stage. 

In most engineering applications, simplifications of the non-linear consti­
tutive law are required in order to obtain simple and useful information. The 
Plastic limit analysis, for example, assumes an elastic-perfectly plastic behavior, 
which, in fact, is a very realistic model for steel. On the other hand, an elastic­
linear softening material agrees very well with concrete behavior. The elastic­
perfectly plastic material can thus be considered a limiting case, Figure 1.3. 

The Theory of plasticity was developed during the first half of the present 
century. Its object is the description of the elastic·plastic behavior when 
the local stress condition is multiaxial and the structural geometry is complex. 
Particular attention is paid to the ultimate situation just preceding the plastic 

* The area under the stress and strain curve is assumed to be an indication of the capa­
bility of the material to absorb energy. 

1 
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III 

IV 

Fig. 1.1. Multilinear stress-strain relation. 
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Fig. 1.2. Stress-strain relation for steel (a) and concrete (b). 
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Fig. 1.3. Bilinear stress-strain relation under tensile and compressive load. 

flow collapse, when the whole structure, or a part of it, undergoes very large 
displacement increments due to very sma1lloading increments. 

In the uniaxial tensile state, the material element is elastic when, Figure 
1.3: 
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-ap < a < ap (1.1) 

while it is plastic when: 

a = ± ap (1.2) 

The case I a I > ap is impossible. The compressive and tensile yield strengths 
are about the same for steel. Analogously, in the bi-axial stress state (plane 
stress condition) the material element is elastic when 

(1.3) 

with a1 and a2 being the principal stresses. 
The condition of plasticity corresponds to 

(1.4) 

The case F( a 1, a2) > 0 is not included in perfect plasticity. 
Equation (1.4) describes certain yield surface according to the assumed 

condition. The first criterion was proposed by Beltrami [1] at the end of the 
nineteenth century. It states that plastic flow occurs locally when the strain 
energy density function attains its critical value. The associated yield surface 
is: 

o (1.5) 

where z; is the Poisson ratio. 
Then, von Mises [2] assumed that the plastic flow occurs when the dis­

tortional strain energy density reaches its critical value. The von Mises' yield 
surface is described by 

(1.6) 

This is the equation for an ellipse in the plane of the principal stresses, Figure 
104. Such a criterion received various experimental confirmations. 

Another well-known plasticity criterion is due to Tresca [3]. It assumes 
that plastic flow occurs when the maximum tangential stress attains its 
critical value: 

(1.7) 

The yield locus given by equation (1.7) is an hexagon in the plane of the 
principal stresses, Figure 1.4. 

Eventually, Hill [4] suggested a plasticity criterion based on the maximum 
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a, 

Fig. 1.4. Yield loci in the plane of the principal stresses. 

principal deviatoric stress: 

o (1.8) 

The yield locus in equation (l.8) is an hexagon in the plane of the principal 
stresses, Figure 1.4. The relations of the Tresca, Hill and von Mises yield 
envelopes are shown in Figure 1.4. 

While the nature of plastic flow is clear, i.e., dilatation being collinear to 
the stress, in the uniaxial stress state, it is difficult to visualize the corre­
sponding mechanical deformation in multiaxial stress states. 

Normality of incremental plastic strain. Consider a material element in 
the initial stress state a o. Suppose that in incremental change in stress state 
(a - ao) is experienced by the element and then removed in quasi-static 
manner. The well-known Drucker's Postulate [5] asserts that the material 
is stable if the work performed in the loading cycle is non-negative. For a 
stress state a lying on the yield surface F(a) = 0, and for any admissible stress 
state a 0 lying in the elastic field or on its boundary, the condition 

(1.9) 

should hold with Ep being the incremental plastic strain corresponding to a. 
It is possible to give a geometric interpretation of a and Ep, Figure 1.5. The 
scalar product of equation (1.9) is always null or positive. 

Since ao could be inside or on the yield surface, it follows that a regular 
point on the yield surface, has a unique tangent such that Ep is normal to the 
yield locus and the yield locus is convex. For a singular point on the yield 
locus, Figure 1.6(a), E p cannot be uniquely defined by the normals. More 
than one Ep vector can correspond to the same a. On the other hand, in the 
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Fig. 1.5. Normality of incremental plastic strain. 

Fig. 1.6 (a). Singular point on the yield surface. 
Fig. 1.6(b). Yield surface not convex in the strict sense. 

zones where the yield surface is linear (not convex in the strict sense) more 
than one a vector can correspond to the same E p, Figure 1.6(b). The last 
two cases prevail in the Tresca's hexagon. 

The elastic field includes the origin, and then equation (1.9) with a 0 = 0 
yields 

alp = ~(ep) > 0 (LlO) 

where ~ represents the work dissipated per unit volume and is only a function 
of the incremental plastic strain. This is valid even when the yield locus 
contains singularities and is not convex in the strict sense (linear segments). 
Then, the following hypothesis is equivalent to the Drucker's Postulate: the 
work dissipated per unit volume is only a function of the incremental plastic 
strain. From this, it is possible to deduce the normality rule and the yield 
locus convexity [6]. Equation (1.10), in fact, shows that any stress statea 
able to produce incremental plastic strain Ep must lie on the plane normal 
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Fig. 1.7. Convexity of the yield locus. 

to ~ p and distant ¢( ~ p) from the ongm, Figure 1.7. When E p rotates 
around 0, all these planes envelop the yield locus satisfying the convexity 
condition. 

If if is the incremental stress corresponding to the incremental plastic 
strain ip, then: 

(1.11 ) 

This can be obtained by assuming a to be the initial stress state and is the 
incremental stress state. The condition 

(1.12a) 

pertains to the elastic-perfectly plastic materials and 

(L12b) 

to strain-softening materials. This means that, while strain-hardening and 
perfectly plastic materials may be stable according to the Drucker's Postulate, 
strain-softening materials may not. 

In Figure 1.8, the Tresca's yield locus and the related plastic flow mechan­
isms are illustrated. Along the segments AB, BC, DE and EF, only one of the 
two principal dilatations is activated, while along CD and FA one dilatation 
is positive and the other is negative; they are activated at the same time and 
to the same extent. 

Theorems of limit analysis. Consider a rigid-perfectly plastic structure 
subjected to a proportional loading condition measured by the parameter A., 
Figure 1.9. A stress field is statically admissible when it is in equilibrium with 
the external loading A. and F";;; 0 for each point of the structure. On the other 
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o 

Fig. 1.8. Plastic flow mechanisms according to the Tresca's yield locus. 

XP2 

Fig. 1.9. Rigid-perfectly plastic structure subjected to a proportional loading condition. 

hand, a plastic flow mechanism is kinematically admissible when the external 
constraints are satisfied and the corresponding dissipated work is positive. 

The following theorems may be stated. 
(a) Maximum dissipated work theorem: Given a plastic flow mechanism 

ip , the work dissipated by the stress (I co"esponding to such a mechanism in 
Figure 1.7 is higher than or equal to the work dissipated by any possible 
stress (I': 

(1.13) 

The inequality in equation (1.13) is valid for each point of the structure and 
hence from equation (1.10), it can be shown that 

(1.14) 

(b) Static theorem (upper bound theorem): The loading parameter A-
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corresponding to any statically admissible stress field is lower than or equal to 
the limit load parameter 'Ap. Let a- be a statically admissible stress field and 
"A.-the corresponding external loading parameter. If a is the limit stress field, 
then Ii and e p are the corresponding incremental displacement and incremen­
tal plastic strain at limit load, respectively. The application of the Virtual 
Work Principle gives 

(USa) 

(l.1Sb) 

The inequality in equation (1.13) then leads to 

(1.16) 

and hence 

(1.17) 

(c) Kinematic theorem (lower bound theorem): The loading parameter"A.+ 
corresponding to any kinematically admissible plastic flow mechanism is 
higher than or equal to the limit load parameter "A.p • Let Ii+ and e+ be the 
fields of incremental displacement and incremental plastic strain respectively 
related to a kinematically admissible plastic flow mechanism. The limit stress 
field is a. The loading parameter "A. + corresponding to the kinematically 
admissible plastic flow mechanism is given by 

Iv q>(e+)dV = ~ "A.+p;,ut 
I 

(1.18) 

The application of the Virtual Work Principle to the limit stress field a and 
to the kinematically admissible mechanism i+ gives 

(1.19) 

From equation (1.14), it is found that 
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(l.20) 

Equations (1.18), (1.19) and (1.20) thus yield 

(l.21) 

(d) Mixed theorem: If the loading parameter A co"esponds to a statically 
admissible stress field as well as to a kinematically admissible plastic flow 
mechanism, equations (l.17) and (l.21) give 

(l.22) 

(e) Material addition: A size increase of a perfectly plastic structure 
cannot produce a decrease in the limit load. The sum of the limit stress field 
in the original structure with an identically null stress field in the added 
material portion constitutes a statically admissible stress field. This means 
that the limit load of the latter structure is higher than or equal to that of 
the former. 

Elastic-plastic beam behavior. The elastic-plastic behavior of a beam will be 
analyzed. The classical theory of Bernoulli assumes that plane cross-sections 
before bending remain plane after bending. The case of the symmetric cross­
section in Figure l.1O will be considered. Let Y be the bending axis and X 
the neutral axis. The variations of the longitudinal dilatations € and the 
stresses U with yare shown in Figure l.1O. In the elastic range, Figure l.1O(a), 
the well-known equations 

M 
U =TY' 

and 

M 
W' 

U 

E 

I 
W=-

b/2 

(1.23a) 

(1.23b) 

are obtained and they hold for umax < Up. Here M is the bending moment, E 
the Young's modulus, I the moment of inertia and b the depth of the cross­
section. 

When M> upW, elastic-plastic bending occurs. The € diagram is linear, 
whereas the absolute value of stress U cannot exceed the yield strength, 
Up. The stress diagram is then shown in Figure 1. 1 O(b). If d is the distance 
between the X-axis and the beam fibers where I € I = €p, the equilibrium 
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(c) 

Fig. loiO. Elastic-plastic flexural beam behavior: cross section with two axes of symmetry. 

condition is 

ff fd y fb'2 
M = oydA = 2 op-yt(y)dy + 2 opyt(y)dy 

A 0 d d 

Recalling that the curvature is given by 

R 
b/2 

€p 

d 

equation (1.24) can be rewritten as 

M = 20p - y 2t(y)dy + yt(y)dy [ RfEP/R fb!2 J 
€p 0 €p/R 

(1.24) 

(1.25) 

(1.26) 

When the curvature R increases, the bending moment M tends to a limit 
value,Mp: 

r Jbl2 
R Im M = 20p yt(y)dy 

--+~ 0 
20pS = Mp (1.27) 

The limit value Mp is called plastic moment. It is equal to the product of the 
yield strength by twice the statical moment of half-section related to the 
X-axis. When the whole cross section is yielded, the 0 diagram appears as that 
shown in Figure 1.1O(c) with a discontinuity on the X-axis. It is interesting 
to compare the moment at incipient yield Me = Up W, with the plastic moment 
Mp = 2opS. For a rectangular cross section we have Mp/Me = l.5, while for 
the commercial I-beams this ratio is about 1.15. 
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Consider now a rectangular beam cross section and a material having the 
same strain-softening behavior in tension and in compression, Figure 1.3. 
When the material is elastic-perfectly plastic (m -+ 00), the bending moment 
in the non-linear stage is given by a special case of equation (1.26): 

_ opb2 [ 1 (Re)2] M--l---
4 3 R 

(l.28) 

Re being the limit elastic curvature 2€p/b. When the material is elastic­
perfectly brittle (m = 0), the result is 

(1.29) 

Finally, when the material is elastic-linear softening, Figure 1.3, the following 
relations hold 

Re 
for- ~ 

R m + l' 

M opb2 [~_!(Re)2 -1.(~-1) (1_ Re)(1 +!Re)] 
6 2 2 R m Re R 2 R ' 

Re 
for- > 

R m + 1 
(1.30) 

Therefore, the maximum allowable bending moment lies between 1/6 opb2 

and 1/4 opb2 • The variations of the bending moment with curvature are 
shown in Figure 1.l1. 

Consider now a cross section with only one axis of symmetry that coincides 
with the bending axis, Figure 1.12. The neutral axis remains perpendicular 
to the symmetry axis, although its position is not fixed during the loading 
process. In the limit case of a completely yielded cross section as given in 
Figure 1.12, the condition 

(1.31) 

holds with A 1 and A2 being the areas of the cross section located above and 
below the plastic neutral axis, np , respectively. Therefore, the plastic moment 
is 
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Fig. l.I1. Variations of the bending moment with curvature for an elastic-softening 
material. 

(al Ibl lei Idl 

Fig. 1.12. Elastic-plastic flexural beam behavior: cross section with one axis of symmetry. 

(1.32) 

where d 1 and dz are the distances of the neutral axis np from the centroids 
of the half-sections. When Me < M < Mp , the neutral axis is between ne and 
np as shown in Figure 1.12. 

In general, a beam can be loaded by a combination of bending moments, 
Mx and My, torsional moment, M z , shear forces, Sx and Sy, and axial force, 
Fz. They can produce curvatures Rx and R y, rotation Oz, shear deformations 
7)~ and 7)~, and axial dilatation Ez respectively. It is possible to prove the 
theorems of normality of incremental plastic strain and convexity of yield 
locus by replacing the stress vector, f1, with the six-dimensional loading 
vector, Q, and the incremental plastic strain vector, Ep, with the plastic flow 
vector, itp. 
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Consider the case of eccentric axial force. For a rectangular cross section 
loaded by the axial force F on the Y-axis with eccentricity e, four stages of 
development prevail as F is increased. Referring to Figures 1.13(a), (b), (c) 
and (d), they correspond respectively to elastic, elastic-plastic yielded only 
on one side, elastic-plastic yielded on both sides and limit condition with 
complete yielding. Figure 1.13(d) can be decomposed as shown in Figures 
1.14 such that Figure 1.l4(a) represents the resultant force F, and Figure 
1.14(b) the resultant moment M = Fe. If 8 is the extension indicated in 
Figure 1.14, then 

N = upt(b - 28) 

and 

M = up t8(b - 8) 

The plastic axial force and bending moment are 

N p = uptb 

respectively. The following ratios can be defined: 

M= M 
Mp 

such that 

M = I-N 2 

(1.33a) 

(1.33b) 

(l.34a) 

(1.34b) 

(l.3Sa) 

(1.3Sb) 

(1.36) 

The yield locus in the plane M versus N is given in Figure 1.15 and is convex. 

Limit analysis of frames. The limit load for frames can be obtained by the 
application of the Mixed Theorem. A kinematically admissible plastic flow 
mechanism is used. This corresponds to a statically admissible bending 
moment that may be regarded as the plastic limit condition. 

Consider the portal frame of Figure 1.16(a) subjected to a horizontal load 
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Fig. 1.13. Elastic-plastic behavior of a beam subjected to an eccentric axial force. 

a 
p 

(a) 

o 
p 

b 

(b) 

Fig. 1.14. Resultant force and moment of an eccentric axial force, refer to Figure 1.13. 

- 1 

Fig. 1.15. Yield locus in the plane of bending mement vs. axial force. 

Pl. Plastic hinges are formed at 1, 2, 4 and 5 by the incremental horizontal 
plastic displacement Ii I in Figure 1. 1 6(b ). The application of the Virtual 
Work Principle at plastic collapse gives: 

(1.37) 

from which PI is obtained: 
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P, 

11'1" 
3 

141//~1 I 
I • 

2( _~l Mp -----
(a) (b) (e) 

Fig. 1.16. Portal frame subjected to a horizontal load. 

2~ 
I .. 

(a) (b) (e) 

Fig. 1.17. Portal frame subjected to a vertical load. 

(1.38) 

The assumed plastic flow mechanism in Figure 1.16(b) corresponds to the 
bending moment diagram in Figure 1.l6(c), which is statically admissible. For 
the Mixed Theorem, therefore, equation (1.38) gives the limit load. 

Let the portal frame be subjected to a vertical load P2 in Figure 1.17(a). 
Plastic hinges are now formed at 2, 3 and 4 by the incremental vertical 
plastic displacement il2 in Figure 1.17(b). The application of the Virtual 
Work Principle at plastic collapse renders 

(1.39) 

The corresponding bending moment diagram is given in Figure 1. I 7(c) which 
is statically admissible. Equation (1.39) therefore gives the limit load as a 
result of the Mixed Theorem. 

The case when the portal frame is subjected to PI and P2 is shown in 
Figure 1.18(a). Plastic hinges at I, 3, 4 and 5 are formed by the incremental 
plastic displacements ill = il 2, Figure 1.I8(b). The Virtual Work Principle 
leads to 

(I AD) 

and hence 
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Fig. 1.18. Portal frame subjected to a horizontal and a vertical load. 

Mp 
6-

I 

(e) 

(1.41) 

The bending moment diagram is shown in Figure 1.I8(c), which is statically 
admissible only when 

(1.42) 

Equations (1.38), (1.39), (1.41) and (1.42) give the plastic flow locus in 
Figure 1.19. All four quadrants are considered, Le., forces PI and P2 can 
invert their way. The locus is convex and the normality rule is valid for the 
whole structure. In fact, when the IP2 /P I I ratio is small, the lateral mechanism 
in Figure 1.16(b) is activated and the incremental plastic displacement vector 

P2 , u2 

/ " / " / 
/ 

U 

B 
/ 

/ 
/ 

" P"I1, / A " 
" / M 
" / 6--E. 
" / Q 

" / 

" / 

" / 
"- / 

" / 

Fig. 1.19. Plastic flow locus for the portal frame in Figure 1.18. 
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Ii is normal to the side AB of the yield locus so that U2 = O. By increasing the 
IP2/PII ratio in equation (1.42), the mixed mechanism in Figure 1.18(b) is 
activated and the incremental plastic displacement vector is normal to the 
side BC of the yield locus and hence UI = U2. For IP2/Pd > 2, the vertical 
mechanism in Figure 1.17(b) is activated and the incremental plastic displace­
ment vector is normal to the side CD of the yield locus with U I = O. 

1.2. Crack tip stress intensity factor and energy release rate 

Griffith's model. The theoretical strength of metallic materials is about one 
tenth of the Young's modulus, E. Such high values are rarely found in practice. 
In fact, materials fail prematurely due to the existence of microcracks, flaws 
and other stress concentration causes. Brittle materials usually fail at a stress 
level of a ~ E/ 1,000. The theoretical strength of ath ~ E/1O is achieved only 
in opportunely prepared materials, as, for example, the glass fibres. 

Inglis [9] provided the solution of a solid weakened by an elliptical 
cavity subjected to a uniform stress a normal to the major semi-axis of the 
ellipse. The maximum normal stress at the immediate vicinity y = 0 and 
x -+ a is 

(1.43) 

where a and b are the major and minor semi-axis of the ellipse, respectively 

a 

rnrrrI~-'--'-I.----~,---t 1'------', 4 

R g 
d .~-"-~ f 
tj '- Ha 
~ I~ 

~il1IIIIIILD 
a 

Fig. 1.20. Griffith's crack in an infinite slab subjected to a uniform stress field. 
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and p = b2/a is the radius of curvature at the end of the major axis. 
Griffith [10] developed the concept that a pre-existing crack can propagate 

when the elastic energy released during the crack extension is equal to or 
higher than the surface energy required to create the newly formed crack 
surface. Based on the Inglis' stress solution, he considered the limit case 
when the ellipse degenerates into a slit, Figure 1.20, and showed that the 
elastic energy released by the body with a slit of length 2a is 

(1.44) 

The surface energy required to create the total crack surface is 

Ws = 4a'Y (1.45) 

with 'Y being the unit surface energy*. Incipient fracture is assumed to occur 
when the potential energy, V(a) = Ws(a) - We(a), is stationary or decreases, 
i.e., 

dV 

da 

which leads to 

o (1.46) 

(1.47) 

If the initial crack length is given, a = ao, a corresponding value O"cr(ao) 
exists, Figure 1.21. As the critical crack length acr tends to increase, the 
fracture stress O"cr decreases, and the fracture process results to be unstable. 

Irwin's model. Irwin [12] proposed a mathematical crack model referring 
the near stress field to three fracture modes, Figure 1.22. They are the 
opening, sliding and tearing mode and often referred to respectively as 
Mode I, II and III crack extension. The corresponding stress fields are 

a = --- cos - 1 - sin - sin - f) K j f) ( f) 3) 
x (21fT )112 2 2 2 

(1.48a) 

* Equation (1.45) is computed from the definition of surface tension for a liquid and 
not that of breaking the atomic bonds of a solid. Refer to [11] for a clarification of 
the physical implication of the Griffith original derivation [10] although the functional 
form for the critical stress ocr in equation (1.47) is correct. 
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'0 

Fig. 1.21. Variation of the crack propagation stress with the semi-length of the crack. 

T 

(a) (b) (c) 

Fig. 1.22. Fracture modes: opening (a), sliding (b) and tearing (c). 

--- cos - 1 + sin - sin - () K[ () ( () 3) 
(21Tr)1!2 2 2 2 

(1.48b) 

K[ () () 3 
Txy = --- sin - cos - cos - () 

(21Tr)1!2 2 2 2 
(1.48c) 

for Mode I and 

- --- sin - 2 + cos - cos - () KII () ( () 3) 
(21Tr)1!2 2 2 2 

(1.49a) 

KII () iJ 3 
--- cos - sin - cos - () 
(21Tr)1!2 2 2 2 

(1.49b) 

KII () ( . () . 3 ) 
T xy = --- cos - 1 - SIll - SIll - () 

(21Tr)1!2 2 2 2 
(I.49c) 

for Mode II. The stress notations are shown in Figure 1.23 with rand () being 
the local polar coordinates. K[ and KII are known as the stress intensity 
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o 
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o 
-a +a x 

! j j I I I j I j j I ! ! 
o 

Fig. 1.23. Stress notations in the crack tip vicinity. 

factors. Mode III pertains to anti-plane shear and is associated with the local 
shear stresses: 

KIII . 8 
----Slll-

(27Tr)1/2 2 

KIII 8 
T yz = (27Tr)1!2 cos "2 

where Kill is the Mode III stress intensity factor. 

(1.50a) 

(1.50b) 

Strain energy release rate. If an infinite slab contains a crack of initial 
length 2a that extends to the length 2(a + da), the variation of potential 
elastic energy may be computed to define a generalized force G[ and related 
toK[: 

Kj 
E 

(1.51) 

For the Griffith crack, Kr = a...(if{i and hence equations (1.47) and (1.51) 
may be combined to give 

Gre = 2-y (1.52) 

at incipient fracture. Since under in-plane shear as shown in Figure 1.24, the 
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-a +a x 

Fig. 1.24. Griffith's crack in an infinite slab subjected to pure shear at the infinity. 

crack does not grow in a self-similar manner, there is no relation similar to 
that given by equation (1.51) for Mode II. 

1.3. Other fracture criteria 

Since the Griffith model applies only to self-similar crack growth, it cannot 
be conveniently applied to situations where the crack turns or curves under 
general loading conditions. 

Maximum stress criterion. This criterion was proposed by Erdogan and Sih 
[I 3] in 1963 and is based on the assumption that the crack initiates from its 
tip in a direction normal to the maximum circumferential stress uo. With 
reference to the polar coordinates, equations (I.48) and (I .49) may be added 
and expressed in the form 

1 0 
Uo = (21Tr)1!2 cos "2 [K](I + cos 0) - 3KII sin 0] (1.53b) 

1 0 
2(21Tr)1/2 cos "2 [K] sin 0 + KII(3 cos 0 - 1)] (1.53c) 

The fracture initiation angle 0 may be found by letting TrO(O) equal to zero, 
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i.e., 

(1.54) 

which corresponds to the principal plane. Equation (1.53c) gives 

(1.55) 

which can be satisfied by setting cos e /2 = 0 that corresponds to the stress 
free surface conditions of e = ± rr or by letting 

(1.56) 

which yields the crack initiation angle e. For a crack of length 2a subjected 
to stresses applied biaxially, Figure 1.25, the stress intensity factors are 

(1.57a) 

(1.57b) 

with 0{3 and T{3 being respectively the normal and shear stress with respect to 
the line crack. Mohr circle analysis gives 

(
01+ 0 2 0 1- 0 2 ).1-:: K] = --2- + --2- cos 2{3 v rra (1.58a) 

1 1 

Fig. 1.25. Inclined crack subjected to a biaxial stress field. 
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(
02 -OJ ). r::-:: 

KIJ = --2- sin 2{3 V na (1.58b) 

If s is the ratio 0J!02 of the principal stresses, then equations (1.58) can be 
rewritten as 

(1.59a) 

Ku = 02 v'ifi (1 - s) sin {3 cos (3 (1.59b) 

Equations (1.56) and (1.59) further lead to an expression that relates the 
crack propagation angle, 0, and crack inclination angle, {3: 

[s + (I - s) sin2 {3] sin 0 + [~(l - s) sin 2{3] (3 cos 0 - 1) o (1.60) 

Equation (1.60) can be transformed into: 

2 (I - s) sin 2{3 (tan ~ r -2 [s + (1 - s) sin 2 {3] (tan ~ ) 

- (1 - s) sin 2{3 = 0 (1.61) 

The solution of interest is reported in Figure 1.26 for different ratios s. 
If s = 1, it is always 0 = 0, since the stress field at the infinity is uniform, 

and then the crack extension is collinear due to the symmetry. If s = 0, there 
is a discontinuity for (3 = O. In fact O({3 = 0, s = 0) = 0 due to the symmetry, 
while 

lim 0«(3 s = 0) "'" 70° (J ..... o+ , 

If s is small but different from zero, the discontinuity disappears and is 
replaced by a rapid variation, represented by a very steep branch in Figure 
1.26. From a mathematical point of view, this is a typical case of non-uniform 
convergence of function O(s, (3) in {3 = 0 and for s -> 0+. 

While equation (1.54) determines the direction of maximum stress, the 
additional condition may be introduced as a criterion of instability: 

(1.62) 

Introducing the dimensionless stress-intensity factors 

(1.63) 
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Fig. 1.26. Crack branching angle as a function of the crack inclination angle, Maximum 
stress criterion. 

the fracture locus may be plotted in the K; versus K;/ plane. Solving 

K; sin 0 + Kl(3 cos 0 -1) = 0 

* 2 0 3 K/ cos '2-'2Kh sinO 
1 

o 
cos '2 

(l.64a) 

(1.64b) 

for K; and Kl by varying 0, all the points of the locus are defined. They are 
symmetric with respect to the K;-axis and valid only in the half-plane K; ;.. 0, 
Figure 1.27. 

In the foregoing treatment, a core region of finite size ro surrounding the 
crack tip has been assumed such that r in equation (1.53) is larger than ro and 
the crack tip stresses always remain finite. The size of this region can be 
determined analytically [14]. The fracture locus also varies with the ratio 
rola [15]. 

Minimum strain energy density criterion. The strain energy density function. 
at the crack tip is of the form [16, 17] 
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Fig. 1.27. Fracture locus in the plane of the stress-intensity factors, Maximum stress 
criterion. 

(1.65) 

where the volume of the differential element is d V = rdrd8. The coefficients 
aij for plane strain are 

1 
-- [(3 - 4v - cos 8)(1 + cos 8)] 
16rrG 

1 
--(2 sin 8)[cos 8 -1 + 2v] 
16rrG 

1 
-- [4(1 - v)(1 - cos 8) + (1 + cos 8)(3 cos 8 - 1)] 
16rrG 

a33 = 4rrG 

(1.66a) 

(1.66b) 

(1.66c) 

(1.66d) 

The function d Wid V thus possesses a 11r singularity at the crack tip. A strain 
energy density factor S can thus be defined as a function of 8 

(1.67) 
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Sih [16, 17] proposed the following criterion in 1973: 
(a) The crack initiation direction is assumed to correspond with the 

minimum strain energy density factor: * 

as 
ao 0, forO = 00 (1.68) 

(b) The crack starts to propagate when S reaches a critical value, Se at 

o = 00 , 

Unlike the maximum stress criterion, the quantity S alone determines the 
material fracture resistance and the direction of crack initiation. For Mode I 
crack extension, KII = Kill = 0; 00 = 0 and therefore all = (l - 2v)/41TG. 
The critical value of the strain energy density factor, Se, can be related to 
the critical value of the stress-intensity factor, K]c: 

(1 - 2v)(l + v) 
Se = K]c, for plane strain 

21TE 
(1.69) 

In the case of mixed mode in-plane loading, K] of- 0, KII of- 0 and Kill = O. 
By the application of equations (1.65) and (1.66), an expression for finding 
the stationary values of S is obtained: 

as 1 1 
- = K] - sin O(cos 0 - 1 + 2v) + 2K]KII - [2 cos2 0 ao 8G 8G 

1 
+ (2v -1) cos 0 -1] + Kli 8G sin 0(- 3 cos 0 + 1 - 2v) o 

(1.70) 

This results in a fourth order equation: 

(1.71) 

* In general, the strain energy density function dW/d V should be used instead of S, 
particularly in situations where the material is nonlinear [18-201 . 
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Fig. 1.28. Crack branching angle as a function of the crack inclination angle, Minimum 
strain energy density criterion, 

The two factors, K J and Kll , are functions of the loading ratio s, and crack 
inclination angle (3. 

Substituting equations (1.59) into (1.71), it is possible to obtain the crack 
inclination angle, (3, as a function of 8. The results are displayed graphically 
in Figure 1.28 for v = 0.3. 

as 
a8 

The crack growth conditions are 

o 

Equations (1.72) can be restated as 

K;2 sin 8(cos 8 - 1 + 2v) + Kl/ sin 8(- 3 cos 8 + 1 - 2v) 

+ 2K; KJr [2 cos2 8 + (2v - 1) cos 8 - 1] = 0 

[(3 - 4v - cos 8)(1 + cos 8)] K;2 + 4 sin 8 [cos 8 - (1 - 2v)] K; K;J 

+ [4(1 - v)(1 - cos 8) + (1 + cos 8)(3 cos 8 - l)]K;/ 

-4(1-2v) = 0 

(1.72a) 

(1.72b) 

(1.73a) 

(1.73b) 
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Fig. 1.29. Fracture locus in the plane of the stress-intensity factors, Minimum strain 
energy density criterion. 
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Fig. 1.30. Crack branching angle vs, crack inclination angle, comparison between the 
various theories. 

Equations (1.73) yield the fracture locus in the plane K; versus K;I for each 
value of the Poisson ratio v. The fracture loci for v = 0.0 and 0.3 are reported 
in Figure 1.29. The results can be compared with those obtained from the 
maximum circumferential stress criterion in Figure 1,27. 

In Figure 1.30, the curves O({3) obtained from the various theories are 
summarized. The straight line connecting the points - 0 = 90° and {3 = 90° 
corresponds to the simple assumption of Griffith that the crack propagates 
orthogonally to the direction of the uniaxial applied stress. Care, however, 
should be exercised when comparing these results with experiments which 
often contain scatters that are not properly understood and misinterpreted. 
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There is always the temptation to concoct and to modify theories [21,22] 
in order to agree with experiments. Frequently, errors originated from the 
stress analyses [23-25] are carried into the failure criterion. 

The strain energy density criterion [18-20] will be employed throughout 
this book as it can be applied consistently to account for load time history 
effects regardless of geometry, material or loading type. The relationship in 
equation (1.67) will hold in general except that S can no longer be expressed 
in terms of the stress intensity factors if the material behaves nonlinearly. * 
Sih has shown in [20] that the qualitative features of the crack growth 
resistance curves derived from the strain energy density theory for concrete 
are preserved when the energy dissipation mechanisms of the material are 
altered. The plots of strain energy density factors S versus the half or full 
crack length, say a, will be referred to as the SR-curves. They are discussed 
in [20] for the cases of elastic and plastic unloading during crack growth 
in concrete beams that exhibit softening. 

Crack tip cohesive forces. Based on the argument that the stress at the 
crack tip must be finite, the maximum value it can reach is the yield strength 
ap as shown in Figure 1.31(a). If the material softens elastically, the stress 
can go to zero as the crack tip is approached, Figure 1.31(b). A fictitious 
crack longer than the actual one can be considered with cohesive forces 
applied at the tip. In this way, the non-linear effects during crack growth 
can be easily simulated. 

Barenblatt [26] applied the aforementioned concept by considering at­
tractive atomic forces in a very small region near the crack tip. This annuls 
the stress-singularity due to mechanical loads. Dugdale [27] proposed a math· 
ematically similar but conceptually different model of finite crack tip stress. 
His argument is based on material that attains a yield limit at the crack tip. A 
more elegant interpretation of these concepts was made by Rice [28] who 
assumed the restraining stress a as a function of the separation distance, {), 
Figure 1.32 (a). A path independent integral was employed to show that the 
energy Jc necessary to produce a unit free surface can be written as, Figure 
l.32(b ): 

file 
Je = 0 a({))d{) (1.74) 

where Je represents the area under the a versus {) curve, Figure 1.32(a). For a 
linear elastic material, it can be shown that J c = GIC = KJc/E. Such a 
relationship has recently been studied by Hillerborg, Modeer and Petersson 
[29, 30] using a fictitious crack model with cohesive forces at the crack tip 
and the finite element method. When the softening a versus {) law becomes 
perfectly plastic, equation (1.74) yields the well-known relation between the 

* May be a function of all the space variables. 
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(a) (b) 

Fig. 1.31. Stress limitation in the crack tip vicinity: perfectly plastic (a) and softening 
(b) material. 

a 

(a) (b) 

Fig. 1.32. Cohesive stresses at the crack tip: restraining stress as a function of the separ­
ation distance (a) and of the distance from the crack tip (b). 

energy required to create a unit crack growth, Je , the critical crack opening 
displacement, oe, and the yield strength, ap, i.e. 

(1.75) 

The cohesive force models are limited to self-similar cracks and, since 
equations (1.74) and (1.75) are derived from the path independentJ-integral 
also to elastic materials that do not undergo plastic deformation or any other 
kind of irreversible deformation. 
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Fracture of concrete and brittle materials 

2.1. Crack surface friction 

When surfaces are in contact, load can be transmitted in the normal direction 
by compressive forces and in the tangential direction by shear or friction. 
In the case of cracks or lines of discontinuities in concrete, the chances are 
that they will be oriented at some angles with the load. This leads to rubbing 
or sliding of adjacent surfaces, an influence that will be discussed in this 
chapter. 

Mohr-Coulomb friction model. An early criterion applied to study the 
failure behavior of soil and concrete is that of Mohr-Coulomb. It assumes 
that the shear stress T on the fracture plane is induced by friction: 

T = c+J.10 (2.1) 

in which c is the material cohesion, 0 is the compression orthogonal to the 
fracture plane and J.1 is the friction coefficient being related to the friction 
angle <p by the relation J.1 = tan <p. The generalization of equation (2.1) takes 
the form 

T = [(0) (2.2) 

In the plane 0 versus T, equation (2.2) can be considered as the envelope of 
the Mohr's circumferences related to the conditions of incipient fracture, 
Figure 2.1. The criterion can also be expressed in terms of the principal 
stresses 01,02 and 03. For the case shown in Figure 2.2 where 01> 02> 03: 

sin <p (2.3) 

which may be written as 

33 
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Fig. 2.1. Envelope of the Mohr's circumferences related to the conditions of incipient 
fracture. 
Fig. 2.2. Mohr-Coulomb friction criterion. 

(2.4) 

provided that 

2c cos 'P/(I + sin 'P) (2.5a) 

ac = 2c cos 'P/(l-sin 'P) (2.5b) 

are defined as the uniaxial tensile and compressive strengths respectively, 
Figure 2.2. This is a two parameter criterion as only two of the four par­
ameters c, 'P, at, ac are needed to characterize the material strength. It is 
convenient to use the two parameters ac and m: 

m 
l+ sin lP 
1 -sin IP 

(2.6) 

The fracture locus in the plane a1 versus a3 obtained from equation (2.4) is 
an irregular hexagon. Its shape depends on the friction angle 'P or on the 
ratio m. When ac = at, i.e., when 'P = 0 and m = 1, the hexagon coincides 
with that of Tresca's criterion. Note that the friction coefficient /J. increases 
with m, Figure 2.3. 

Griffith's hoop stress criterion. Griffith [1] in 1924 attributed the consider­
ably lower strength of brittle materials to the existence of inherent micro­
cracks. These stress raisers lead to crack growth and the eventual failure of 
the body as a result of macrocracking. He used the maximum hoop stress aT) 
along the contour of the elliptic crack in Figure 2.4 as the criterion of failure 
[1] : 
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0, 

Fig. 2.3. Mohr-Coulomb fracture locus in the plane of the extreme principal stresses. 
Fig. 2.4. Elliptic crack in an infinite slab subjected to a biaxial compressive loading 
condition. 

± U [(a~ + an - (a~ - an cos 2~) }1!2 (2.7) 

The critical orientation f3cr, for which we have the maximum stress among 
the maximum stresses related to the various orientations, can be found by 
differentiating equation (2.7) with respect to f3 and by setting the result equal 
to zero: 

(2.8) 

The elliptical coordinate ~o in equation (2.7) is related to the semiaxes a and 
b of the ellipse in Figure 2.4: 

(2.9) 

Equation (2.8) is valid only when (02/01) ;;;. -! or (ada2) ;;;. -!. Otherwise, 
the solution is f3 = 0 or ~ = rr/2 depending on the stress ratio. Substituting 
equation (2.8) into (2.7) the results is 

(2.10) 

where (a17 )max is the maximum tensile stress along the elliptic contours. 
Suppose that many elliptic cracks are randomly oriented and that ath 
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denotes the theoretical strength at the edge of the most vulnerable crack. 
Then, equation (2.10) may be set equal to 0th at incipient fracture: 

(2.11 ) 

On the other hand, if the slab is subjected to uniaxial tensile stress with 
02 < 0 and 01 = 0, then equation (2.7) becomes 

02 1 
01) = - b(l + cos 2(3) ± [i(l + cos 2(3)]1!2} 

~o 
(2.12) 

Differentiating 01) with respect to {3 and setting the result equal to zero, it 
is possible to obtain the solution {3 = 0 with the maximum hoop stress given 
by 

(2.13) 

The allowable applied stress acr can thus be obtained by letting (o1))max = 

0th, i.e., 

ath~O o = ---
cr 2 

Combining equations (2.11) and (2.14), it is found that 

(2.14) 

(2.15) 

In the special case of uniaxial compression, equation (2.15) yields a com­
pressive strength equal to eight times the tensile strength ocr' The condition 
in equation (2.15) is valid only for (02/ad :;;<:-j and (oda2) :;;<:-j. The 
fracture locus of equation (2.15) is displayed in Figure 2.5. The Mohr­
Coulomb criterion also gives a ratio of oc/Ot = 8.0 when 'P = 51 0 in equation 
(2.6). 

Griffith cracks with friction. McClintock and Walsh [2] proposed the idea 
that narrow elliptical cracks can close. This gives rise to shear stress on the 
crack due to friction that tends to increase the strength because of the 
reduction of stress concentration at the ends of the crack. Let the normal 
stress on the crack surface be 0t which is assumed to be a function of only 
the applied stress normal to the crack, Oil' When the applied stress Oil reaches 
some critical compressive value o~" the crack closes at the ends. A further 
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0, 

0, 

Griffith Fracture Locus 

Fig. 2.5. Griffith fracture locus in the plane of the principal stresses. 

increase in a(3 causes a corresponding increase in a~. Hence, a relationship 
between the compressions 0(3 and o~ can be established: 

0, (2.16a) 

(2.16b) 

The frictional shear stress, Tf, is obtained by assuming that a frictional stress 
must be overcome to activate crack growth, i.e., 

(2.17) 

The modified condition of incipient fracture is therefore 

Ocr * ( 
* )112 

= 4acr 1 + - - 2iJ.acr 
acr 

(2.18) 

where acr refers to the critical applied stress in the absence of friction effects. 
From equation (2.18), the ratio m of compressive to tensile strength is 
obtained 

( * )112 Ocr * 4 1 + - -2iJ.acr 
acr 

m (2.19) 

Since a;r ~ 0, when iJ. ~ 1, it follows that ac ~ lOat . For friction angles 
between 45° and 50°, this result is in agreement with that by Griffith. The 
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McClintock and Walsh's hoop stress elliptical crack model, however, cannot 
be used to explain the behavior of a line crack because it makes use of the 
linear theory of elasticity that does not account for large rotation at the 
point where the maximum hoop stress criterion is applied. Figure 2.6 shows 
that the tangent line undergoes a 90° rotation when the ellipse shrinks to 
a line crack. 

A more realistic explanation of the large discrepancies of compressive and 
tensile strength of brittle materials has been given by Sih [3, 4] based on the 
strain energy density criterion. He showed that uc/ut can vary from 10 to 
103 depending on the relative orientations of the flaws with reference to the 
uniaxial tensile and compressive stress. Unless flaw orientations are considered, 
the test data on the failure of brittle materials can involve large scatters, 
particularly the measurement of Uc and Ut. 

Stress intensity factors. Instead of using the stress on the elliptical crack 
boundary as the criterion of incipient fracture, the stress intensity factor 
concept for a line crack (b = 0 in Figure 2.4) may be adopted. Let K; and 
Kl denote the dimensionless stress intensity factors corresponding to Mode 
I and II crack extension. They are defined as 

K; = u@....;rra 
(2.20a) 

KIC 

Kl T@....;rra 
(2.20b) K1C 

in which u{3 and T{3 can be related to a uniaxial stress state defined as U1 = 0 
and U2 = ucr> Figure 2.7, i.e., 

Ucr "2" (1 - cos 2(3) (2.21a) 

Ucr 
T{3 = "2" sin 2{3 (2.21b) 

When both K; and Kil are present, the direction of crack initiation is not 

lal Ibl 

Fig. 2.6. Large rotation after shrinking of the elliptic crack. 
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Fig. 2.7. Fracture loci in the plane of the dimensionless stress-intensity factors. 
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known ahead of time. The strain energy density theory* in [5, 6] or the 
Sc-theory can be most conveniently applied in this case. Plotted in Figure 
2.7 are the K; versus Kif curves predicted by the Sc-theory for v = 0.3 and 
data of PMMA plates [7] with KIc = 9.3 kg/mm3/2 . Agreement is seen with 
the data points A, B, ... , D for large {3 while the points E, F, ... , H had an 
opposite trend corresponding to small {3. Such a deviation is due to the 
inadequacy of the single crack model** that cannot account for the change 
in nonhomogeneity of the system due to the interaction of load with the 
presence of microcracks in PMMA as (3 is reduced. It should be remembered 
that the stress intensity factor concept is limited to linear elastic behavior 
and cannot be applied to explain the data points E, F, ... , H in Figure 2.7 
where nonlinearity effects cannot be neglected. 

Fictitious macro crack model. A fictitious macrocrack of length 2ao will 
be assumed to model the multitude of randomly oriented and distributed 
microcracks. A schematic of the model is shown in Figure 2.8(a) where a 
state of biaxial tension is considered. The situation in Figure 2.8(b) represents 

* Other criteria such as the maximum normal stress. energy release rate, etc., are funda­
mentally unsound although they may yield predictions that do not deviate signifi­
cantly from experiments for specific problems. They do become problematic in 
general and cannot be conveniently applied to all materials, loading conditions and 
component geometries. 

* * Different results will be predicted by the strain energy density theory if the stress 
analysis were to include the effects of material nonlinearity and the presence of 
many cracks oriented and located at different positions. 
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Fig. 2.8. Fracture envelopes in the Mohr's plane, 0[3 versus 1"[3, related to the condition of 
incipient micro-cracking. 

all the possible stress states (a[3, 7(3) that do not result in crack propagation. 
Fracture occurring in a direction normal to a[3 with 7[3 = 0 at 130 = 90° is 
shown in Figure 2.S(c) while Figure 2.S(d) pertains to uniaxial fracture under 
compression for the fictitious crack inclined at an angle 90° -(<{J/2). 

By neglecting the effect of a2 and assuming that a, and a3 are respectively 
the maximum and minimum principal stresses, the model can be applied to 
three dimensional stress states even though only K] andKu are used. Frictional 
effects may also be included by assuming that crack propagation occurs 
when [S] 
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(2.22) 

or 

for K[ < 0 (2.23) 

Figure 2.9 gives a plot of a1 versus a3 for four different values of the angle 
of friction between the crack surfaces. The concavity of the envelope in the 
T{3 versus a{3 plane is equivalent to the concavity of the a 1 versus a3 locus 
in the tension-compression quadrants. Such a concavity is similar to that of 
the Drucker Postulate [9]. Considered here is the effect of friction-resistant 
materials. Several authors have observed this concavity in biaxial experimental 
investigations on concrete specimens [10,11]. Their results can be explained 
by application of the Strain Energy Density Theory [5, 6] for a{3 > 0 and 
including the friction effects for a{3 < 0 [8]. In Figures 2.10 and 2.11, it is 
evident that by increasing the ratio of compressive to tensile strength, the 
concavity of the experimental locus becomes more pronounced. This can be 
theoretically explained by observing the trend of the loci reported in Figure 
2.9. The concavity of the envelope tends to increase as the ratio of compressive 

B 

Sc - Theory 

(v = 0) 

a 

Fig. 2.9. Fracture envelopes for four different values of the angle of friction between the 
crack surfaces. 
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Fig. 2.10. Experimental fracture loci in the tension-<:ompression quadrant [10]. 
Fig. 2.11. Experimental fracture loci in the tension-<:ompression quadrant [11]. 
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to tensile strength is increased provided that the fracture criterion applied 
for u(3 ;;;. 0 is always the same. The Strain Energy Density Theory, for IJ = 0, 
seems to agree accurately with the experimental results. 

2.2. Statistical theories 

It is well-known that all materials contain inherent flaws. Their distribution 
is not deterministic and can be treated in a statistical fashion. In what follows, 
some elementary notion of the probabilistic approach for predicting the 
strength of materials will be considered. 

Probability density and cumulative distribution. For a ductile material, 
the variability in strength of nominally identical specimens is generally not 
more than 4 to 8% of its mean strength, while in a brittle material the variation 
can be as high as 100% of the mean strength. Moreover, brittle material 
behavior is sensitive to changes in the specimen size*. Considered will be the 
weakest link concept of Weibull [12] which assumes that the probability of 
finding a critical imperfection in a given material tends to increase with the 
volume. 

To start with, consider the bell-shaped curve in Figure 2.12 that represents 
the probability density, p, of the random quantity X. It means that the 
probability of obtaining a value of such a quantity included between x and 
x + dx is equal to p(x)dx. If Xl and X2 are the extremes of the interval 
where it is possible to find the X value, we have 

Ix, 

p(x)dx = 1 
Xl 

(2.24) 

The mean value of the distribution p(x) is defined as follows: 

fxX, xp(x)dx fX' x = I = xp(x)dx 
fx~'p(x)dx Xl 

(2.25) 

The product, p(x)dx, represents the area, dA, of the elementary rectangle of 
Figure 2.12. Hence, 

(2.26) 

where A is the area included between the curve p(x) and the X-axis, Sy the 

* Such effect can be explained by the joined application of Fracture Mechanics and 
Statistics. This will be considered in detail in chapter 8. 
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x 

Fig. 2.12. Probability density function. 

statical moment of this area with respect to the Y-axis and Xa the abscissa 
of the centroid of area A. 

In the same way, it is possible to prove that the standard deviation, ~, is 
equal to the radius of inertia of area A with respect to the Ya-axis, Figure 
2.12: 

x, 
~2 = f (x - x)2p(x)dx 

Xl 

(2.27) 

The cumulative distn'bution in Figure 2.13 is the probability that the 
variable, X, is less than or equal to some given value x: 

P(x) = probability (X ~ x) (2.28) 

With reference to Figure 2.12, it is the area under the curve p(x), between 
Xl and x, i.e., 

P(x) = r p(x)dx 
Xl 

(2.29) 

The cumulative distribution is thus the integral function of the probability 

y 

a 

PIx) 

I 
I 
I 
I 
I 

------.--l~ ".~ ___ _ 

Xl XM 

Fig. 2.13. Cumulative distribution related to Figure 2.12. 
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density, so that the probability density is the derivative of the cumulative 
distribution given by 

dP 
p(x) = dx (2.30) 

Weibull's theory. In the Weibull analysis, the material is considered to be 
statistically isotropic and homogeneous. The idea of the 'weakest link of a 
chain' is then adopted which is contrary to the concept that the failure of one 
element causes redistribution of load among the other elements, with total 
failure taking place only when the entire system is no longer capable of 
bearing load. 

Let Plea) be the cumulative distribution of probability of failure by stress 
a for one link. Therefore the probability of survival at a for one link is equal 
to [I - Plea)] . For an entire chain of N links, the probability of failure based 
on the weakest link concept is 

(2.31 ) 

With the knowledge that 

lim (1 _ ~)n exp (- x) 
n-+ oo n (2.32) 

equation (2.31) can be approximated as 

(2.33) 

Since the number of links, N, is proportional to the volume, V, the probability 
of failure can be expressed as 

Pf = 1 - exp [- V<I>(a)] (2.34) 

where V<I>(a) = NPI(a). In equation (2.34), <I>(a) is an unknown function and 
Weibull assumed an empirical form for this function given by 

<1>( a) for a > au (2.35a) 

and 

<1>( a) 0, for a .0;; au (2.35b) 
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where au is the stress at which there is no probability of failure and is called 
the 'threshold stress'. The quantity ao is a normalizing factor and m is a 
material parameter or the Weibull modulus. If the threshold stress is assumed 
to be zero, the probability of failure by a uniaxial tensile stress a in the 
cumulative distribution form is 

(2.36) 

The mean strength can then be obtained by using the probability of failure 
in the probability density form 

"" dP 1 
Uf = f a _f da = f adPf 

o da 0 
(2.37) 

If the probability of survival p. is equal to (1 - Pf ), it can be seen from 
Figure 2.14 that 

Therefore 

where r is the 'Gamma-function' defined as 

r(z) = f"" r-1e-tdt 
o 

(2.38) 

(2.39) 

Equation (2.36) can be modified to include the stress variation due to 
non-uniform uniaxial stress field as follows: 

(2.40) 

For the three point bending specimen in Figure 2.15, the longitudinal stresses 
a are different at different points of the beam and hence 
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Fig. 2.14. Cumulative distribution of the probability of failure. 

Fig. 2.15. Three point bending specimen. 

[ (a )m 1/2Jb/ 2(4Xy)m ] 
Pf=l-exp-2t :;x fo 0 lb dxdy (2.41) 

where amax is the maximum stress occurring at the bottom fiber. Integrating 
the above equation and using equation (2.38), it is found that 

(2.42) 

The above expression is similar to equation (2.39). The only difference is 
the factor: f(m) = [2(m + Il]lIm. For any flexural loading system [13], 
af takes the form 

_ ao ( 1 ) 
af = V llm r 1 + m f(m) (2.43) 

where f is a function of m alone and depends on the particular loading system. 
Equation (2.43) can be put into the logarithmic form: 

(2.44) 

It follows from equation (2.44) that the average strength decreases when 
the specimen volume is increased. Equation (2.36) can also be put into the 
logarithmic form 
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(2.45) 

Both equations (2.44) and (2.45) are useful for the experimental deter­
mination of the Weibull modulus, m. The former can be applied only when a 
set of specimens of different size are tested while the latter can be utilized 
with a set of identical specimens as illustrated by the straight line plot in 
Figure 2.16 [14]. The physical meaning of the Weibull modulus, m, will be 
discussed in chapter 8. 

Safety factor. The factor of safety, s, is defined as the ratio of the mean 
strength to the strength at a given probability offailure: 

(2.46) 

From equations (2.36) and (2.43), an alternative form for Pf can be, obtained: 

From equation (2.46) it follows that 

Since Pf = 1 - Ps , the above equation leads to 
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Fig. 2.16. Experimental plots related to equation (2.45) [14 [ . 

(2.47) 

(2.48) 
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s= (2.49) 

The safety factor is independent of the volume of the structural element. It 
is only a function of the probability of survival and of the Weibull modulus. 
Figure 2.17 shows that s tends to 1 for large values of m. This means that 
materials with high values of m are safer than those with low values of m. The 
Weibull modulus will be shown in chapter 8 to depend on the shape and the 
size-distribution of micro-defects, as well as on the ductility of the material. 

2.3. Mechanical damage and strain-softening behavior of concrete 

The mechanical damage of concrete-like materials tends to decrease load 
carrying capacity and stiffness of the material. These two effects can be 
described together by considering strain-softening. Let the specimen in 
Figure 2.18(a) be subjected to cyclic compression. The stress-strain diagram 
is given in Figure 2.18(b). The Young's modulus and the maximum bearable 
stress decrease with increasing the number of loading cycles. The a versus 
€ envelope describes the strain-softening behavior of the material. The 
same behavior can be found even if a concrete specimen is tested in tension 
with monotonic strain variation by using a strain-controlled testing machine. 
It is important to emphasize that the permanent plastic deformations in 
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Fig. 2.17. Variation of safety factor with Weibull modulus for the three point bending 
specimen. 
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Fig. 2.1S. Concrete specimen (a) subjected to repeated compression (b). 

concrete-like materials are relatively small so that unloading can be assumed 
to return to the origin. 

Several authors have considered damage theories without considering the 
orientation of preexisting and new developing microcracks. More recently, 
Krajcinovic and Fonseca [15] have considered damage as a multitude of flat, 
plane microcracks. The shape of the microcracks turns out to be of little 
significance while the crack density played an important role. Their results 
correlated well with experiments [16] . 

Delameter, Herrmann and Barnett [17] considered an infinite elastic solid 
containing a doubly periodic rectangular array of slit-like cracks shown in 
Figure 2.19 subjected to a uniform stress. A state of plane strain was assumed. 
The cracks were represented as suitable distributions of dislocations deter­
mined from a singular integral equation. The computation of the change in 
strain energy due to the presence of the cracks led to the determination of 
effective elastic constants. The cracked sheet behaved as an orthotropic solid. 
The effective Young's modulus orthogonal to the cracks is given in Figure 
2.20 as a function of the crack spacing in both the x and y directions. 

The mechanical damage, i.e., the decrease in Young's modulus, is related 
to the strain-softening material behavior as well as to the smeared micro­
cracking. On the other hand, it can also be included in a fracture mechanics 
description of macro crack growth. Near the tip of a crack, in fact, the stress 
concentration produces a degradation of the local elastic modulus and this 
material damage interacts with the crack growth process. The decrease in the 
elastic modulus leads to a stress relaxation at the crack tip. This can be 
associated with the strain energy density absorbed locally and dissipated 
nonuniformly for each increment of crack growth. A finite element analysis 
of this damage process coupled with the strain energy density criterion will 
be applied in the subsequent chapters. 

Damage and strain-softening. Decrease in elastic modulus and load relax­
ation at the crack tip are closely connected. As proposed by Janson and Hult 
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Fig. 2.19, Infinite elastic sheet containing a doubly periodic rectangular array of slit-like 
cracks, 
Fig. 2.20. Effective Young's modulus orthogonal to the cracks as a function of the crack 
spacing. 

[18-20], they can be jointly described through a simple analytical model 
that consists of a sheet containing a crack and loaded in Mode I. The material 
is assumed to exhibit time-independent continuous damage when loaded and 
damage affects only the stress in a narrow region ahead of the crack corre­
sponding to the Dugdale zone [21]. The stress field in the crack tip region 
is approximated as uniaxial so that a simple analysis can be performed. Let P 
be the transmitted load, A the macroscopic area and Aeff the microscopically 
load carrying area. Broberg [22] defined u = PjA, Ueff = PjAeff and 

For small w, the Kachanov definition [23] gives 

w 
A -Aeff 

A 

The relation 

U = Ueff exp(-w) 

(2.50) 

(2.51 ) 

(2.52) 

can thus be established. Assuming that damage depends on strain according 
to a power relation, then 

(2.53) 

Alternatively, damage can also be defined in terms of the local decrease in 
elastic modulus: 
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w = In (EIEeff) (2.54) 

From equations (2.53) and (2.54), it is seen that 

(2.55) 

and hence 

(2.56) 

Near the crack tip where the strain is very high, the stress is assumed to vanish: 

lim u = lim EE exp (- KEm) = 0 
E-+ 00 € --+ 00 

(2.57) 

The above model therefore yields a strain-softening behavior, Figure 2.21. 
Assume that damage does not alter the strain distribution around the 

crack. The relation 

(2.58) 

holds such that Ueff and E vary as ,-1/2 and the damage parameter w as 
,-m12 where, is the distance from the crack tip. Close to the crack tip, 
equation (2.56) yields 

a ex ,-112 exp (- K,-mI2) (2.59) 

A zone can be identified close to the crack tip, within which the stress a 
decreases while aeff, E and w increase. 

Later on, a more refined model similar to that of J anson and Hult [18-20] 
will be presented. Damage will be assumed to depend on the absorbed strain 
energy density and not on the uniaxial strain E as in equation (2.53). The 
Kachanov ratio w in equation (2.51), however, will be shown to have the unit 

a 

a-exp(-Kf"') 

o 

Fig. 2.21. Strain-softening constitutive behavior. 
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value when the strain energy density in a unit volume of material reaches 
the critical value, (d Wid V)c' This corresponds to the elastic modulus being 
zero and the material can no longer carry any load. The slow crack growth 
process will also be addressed as in the works of [24-26] . 

Damage and fracture. It is possible to associate damage with crack forma­
tion and propagation by assuming that a strain localization [27, 28] occurs 
and a stress-displacement law governs the mechanical behavior of the body. 
More precisely, when a concrete specimen is tested in uniaxial tension, 
damage is assumed to occur in the fracture zone, Figure 2.22, as the strain 
E exceeds the strain capacity, Eu' Bazant and Oh [29] showed that such a 
zone has a characteristic constant width Wo, so that the opening w of the 
fracture zone can be expressed by the product 

(2.60) 

where Ed is the strain within the damage zone. Using equation (2.60), it is 
possible to transform the strain localization theory into that based on cohesive 
force. The only necessary assumption is that the fracture zone width, wo, is 
actually a material constant. This was shown for the case of concrete by 
Bazant and Oh [29]. A very extensive statistical investigation showed that 
Wo is about three times the maximum aggregate size. 

By observing tensile tests on concrete specimens, it is possible to assert 
that the damage zone becomes more and more localized as the loading 
capacity decreases. While the material within the fracture zone softens, 
Figure 2.22, the stress and strain outside the fracture zone still behave in a 
proportional manner. As a result, strains accumulate in the fracture zone 
while the remaining part of the body unloads itself. Hillerborg, Modeer and 
Petersson [30] assumed that the original width of the fracture zone is equal 

a 
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Fig. 2.22. Localization of the fracture zon\'. 
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Fig. 2.23. Stress-strain and stress-displacement constitutive laws. 

to zero. It is different from zero only during the stage when it is being devel­
oped. Stress at the softening stage will, therefore, be a function of this 
width, w, Figure 2.23. This simple hypothesis explains the size effects for the 
descending branch of the global 0 versus € curve which appears to vary with 
specimen size [31] as shown in Figure 2.22. Another remarkable consequence 
of this hypothesis is that it is possible to have similarity in the physical 
fracture behavior only when the value We of total stress relaxation is pro­
portional to the structural size, L. In this case, the fracture energy GIG = 

ouwe/2, is proportional to L, Figure 2.23, and the global collapse dilatation, 
€e "" welL, is constant as the size L is varied. 

The change of the abscissa as the unstable stage begins, Figure 2.23, is 
important and will be discussed in more detail subsequently. The dilatation 
is a dimensionless quantity, while the width W of the fracture zone has the 
dimension of length, [L]. Size (or scale) effects in Fracture Mechanics 
originate from this transition. The area under the 0 versus € curve represents 
the energy dissipated per unit volume, thus having the physical dimension 
of stress, [F] [L r2. It is well-known that the classical strength criteria such as 
those advanced by Beltrami using the strain energy density and von Mises 
using the distortion energy density, are equivalent to imposing limits on 
certain stress quantity. On the other hand, the area under a 0 versus W curve, 
Figure 2.23, represents the energy dissipated per unit area, thus having the 
dimensions of surface energy, [F] [L r 1 • 

Several authors have assumed a crack propagation model similar to that 
by Hillerborg, Modeer and Petersson [30,32] . Gerstle, Ingraffea and Gergely 
[33] generalized the Fictitious Crack Model by Hillerborg to mixed mode 
crack problems and considered both normal and shear stresses on the crack 
surface as functions of both discontinuities in normal and tangential displace­
ments. Bazant and Oh [29] transformed the a versus W descending law into 
a a versus € softening law. They simply divided the crack opening displace­
ment W by using the characteristic width Wo of the crack band that forms the 
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fracture process zone. Wecharatana and Shah [34] showed that the value We 

of the critical crack opening displacement strongly affects the length of the 
process zone. It is, however, not sensitive to the shape of the a versus W 

diagram. Visalvanich and Naaman [35] proposed a generalized a versus W 

law for fiber reinforced mortar and plain concrete that agreed with the 
experimental results. Gj~rv and L¢lland [31] combined the damage model 
by Janson and Hult [18] with the fictitious crack model by Hillerborg, 
Modeer and Petersson [30]. 

Statistical continuous damage theory. The connection between the Con­
tinuous Damage Theory and the Statistical Strength Theories [36] will now 
be discussed. According to the Kachanov damage definition given in equation 
(2.51), the macroscopical stress is 

a = £e(1 -w) (2.61) 

If p,(a) is the failure probability density function, the damage due to the 
uniaxial tensile stress a can be defined as 

(2.62) 

where P,(a) is the cumulative distribution function of the probability of 
failure. In the case of Weibull distribution, damage can be expressed as 

(2.63) 

Equation (2.63) can be obtained from equation (2.36) by considering a unit 
volume of material. When m = 1 and for small values of e, equation (2.63) 
reduces to 

Ee 
(2.64) w 

This corresponds to a uniform band-limited probability density of failure, 
Figure 2.24. 

From equations (2.61) and (2.64), the softening stress-strain relationship 
is obtained: 

(2.65) 
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Fig. 2.25. Softening stress-strain relation in the case of a uniform band-limited probability 
density of failure. 

In the case of a uniform band-limited probability density Pt(o), this is a 
second degree parabqla symmetric about the axis c = cu , Figure 2.25. Defining 
failure as the inability of a tensile specimen to support additional load inc­
crements, Cu is found as 

00 

2E 
(2.66) 

In general, equations (2.61) and (2.63) yield the softening stress-strain 
relationship 

(2.67) 

which is similar to equation (2.56). In this case, the ultimate strain, Cw is 
a function of the Weibull modulus, m. The stress-strain curves for three 
different values of the Weibull modulus, m, are displayed in Figure 2.26. 

2.4. Strain energy density theory 

Despite the large number of publications in recent years dealing with the 
selection of failure criteria to predict nonlinear fracture phenomena, the 
majority of the works have centered on specific problem areas and have not 
led to a better understanding of the physics of the problem. In particular, 
the influence of specimen geometry and slow crack growth remain as two of 
the most discussed topics and yet with very little understanding. A consistent 
method for explaining these phenomena has been developed by application 
of the strain energy density theory [5]. Refer to [24,37-39] that address 
specimen geometry effects and to [40-42] that treat slow crack growth. 
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Fig. 2.26. Softening stress-strain relations by varying the Weibull modulus m. 

Geometry effects and stable crack growth. By geometry effects, it is meant 
that the mechanical behavior of the structure can change dramatically with 
~he structural geometry, initial crack configuration and/or structural scale. 
While the first two of these three effects can be analyzed by applying the tra­
ditional theory in Solid Mechanics, the last one is more difficult and can be 
explained only by invoking the concepts of Physical Similitude and Model 
Scaling [43, 44] . It is known that by keeping the shape constant and varying 
only the scale or size, the structure behavior can change from brittle to ductile. 

Stable crack growth often occurs prior to global instability of the structure. 
It is different from unstable crack propagation. While the latter is a global or 
structural instability and may be predicted by the critical value of the strain 
energy density factor, Se, the former is a local or microstructural instability 
and depends on the critical value of th~ strain energy density, (dW/dV)e, 
a quantity that can be obtained as the area under the true stress and true 
strain curve. Stable crack growth may occur under both monotonic and 
repeated loadings. It can take place prior to or after unstable crack propagation. 
The fundamental laws governing the transition from slow to rapid crack 
propagation, and vice versa, should be very general and applicable to very 
simple as well as to very complicated structures so that they can be applied to 
extrapolate the results obtained from small specimens for predicting the 
behavior of large structures. 

Strain energy density concept. Perhaps, one of the most general failure 
cri teria advanced to date is the strain energy density theory. It focuses 
attention on the fluctuation of the energy from a unit volume of material 
to the next throughout a medium. The peaks and valleys of this function in 
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mathematical terms are the stationary values. They have been shown in [37-
42] to be associated with the process of material damage. The theory is based 
on the general assumption that progressive material damage can be uniquely 
related to the rate at which energy is dissipated in a unit volume of material 
[4S}. Since the theory applies to any material in general, strain-softening 
materials are also included. A fundamental relation used is* 

dW 

dV 

S 
r 

(2.68) 

in which S is the strain energy density factor with r measured from the 
location of failure initiation. For the case of a line crack, failure will initiate 
from the tip as shown in Figure 2.27 which is surrounded by the radius ro 
of the core region. It serves as a limiting continuum length. The factor S is the 
area under the d Wid V versus r plot in Figure 2.27. Crack initiation occurs 
when dW/d V reaches a critical value, (dW/dV)c. 

The above concept will be incorporated into the finite element stress 
analysis for analyzing the failure of plain or reinforced concrete slabs subjected 
to tension, bending or eccentric compression. Slow crack growth prior to 
global instability will be calculated for each load increment. Specimen size 
and loading rate effects will be exhibited by the SR-Curves. 

Mechanical damage and strain-softening. Material damage at the crack tip 
and crack growth increments will be computed by using the bilinear elastic­
softening stress-strain relation in· Figure 2.28. Stress may increase linearly 
with strain up to the point of ultimate strength, U, as shown in Figure 2.28. 
From there on, the strain may increase while the stress decreases down to 
zero at F, Figure 2.28. If the loading is relaxed at A in Figure 2.28, unloading 
is then assumed to occur along the line AO, so that a new loading path OAF 
is obtained. No permanent deformation is accounted for. There is, however, 
a permanent degradation of the elastic modulus. The slope of the line AO 
tends to decrease as the pOint A approaches F. When A coincides with F, the 
effective modulus E* vanishes, and complete separation of the material occurs. 
On the other hand, when A is on the elastic branch OU, unloading occurs 
along the same line and no degradation of the material takes place. 

The present model accounts for mechanical damage by decrease in the 
elastic modulus, E, as dictated by the strain energy density theory [47,48]. 
For a non-damaged material element, the critical value of the strain energy 

* For isothermal systems, dW/d V can be computed from the stress components aij and 
strain components €ij by the expression 
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Fig. 2.27. Crack growth increment t!J.a according to the Strain Energy Density Theory. 
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Fig. 2.28. Bilinear elastic-softening stress-strain relation. 

density function, (dW/dV)c, is equal to the area OUF, Figure 2.28. The 
material element at A is damaged with (d Wid V)d being the area ~UA as that 
portion of the energy dissipated_ The recoverable strain energy density, 
(dW/dV)r is the area OAB while BAF represents the additional strain energy 
density, (dW/d V)a' In this way, the decreased critical strain 'energy density, 
(dW/dV)~ can be expressed as 

(2.69) 

The intersection of (d WI d V)~ with (d Wid V) determines the amount of crack 
growth, Figure 2.27. 
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The above model can be extended to three-dimensional stress conditions 
using the current value of the absorbed strain energy density, (dW/dV), as a 
measure of damage. In other words, the effective elastic modulus, E*, and the 
decreased critical value of strain energy density, (d Wid V)~, can be considered 
as functions of the absorbed strain energy density, (d W/ d V) = (d W / d V)r + 
(dW/dV)d' Such functions in the uniaxial case are 

( dW) * OUAB area -->- AO slope, i.e., d V -->- E (2.70a) 

( dW) (dW)* OUAB area -->- OAF area, i.e., d V -->- d V c (2.70b) 

Stress and strain during softening at A, Figure 2.28, can be expressed in 
terms of stress and strain at the ultimate and fracture conditions, i.e., 

a = E*€ = (2.71) 

By means of equations (2.70), it is simple to express the absorbed strain 
energy density, (dW/dV), and the decreased critical value, (dW/dV)~, as 
functions of the quantities, a w €w €r, and of the effective elastic modulus, 
E*: 

(2.72a) 

(2.72b) 

(2.72c) 

(2.72d) 

The effective modulus E* in equation (2.70a) can be discretized into 25 
different values 
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E*(n) 1,2, ... ,25 (2.73) 

Three different materials are considered in Figure 2.29. They have the same 
Young's modulus, E, the same ultimate stress, au, and strain, €u while differing 
only in the fracture strain, €t. The 25 values of E* and (dW/dV)~ are plotted 
in Figures 2.30 and 2.31 as a function of the absorbed strain energy density, 
(d Wid V), for three different materials. Mechanical damage of the material is 
thus accounted for in discrete increments. When the absorbed strain energy 
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Fig. 2.29. Stress-strain curves for three different materials. 
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Fig, 2.31. Critical strain energy density versus absorbed strain energy density. 

density is equal to the critical value, (dWld V)c, E* and (d Wid V); both vanish. 
Below the value (dWldV)u = -!uuEu = 1.39 X 10-3 kg/cm2 , damage does not 
occur and the elastic modulus and critical value of strain energy density 
correspond to their initial values, 

In Table 2.1, the results for two different cases of toE = Eul2 and Eul4 are 

TABLE 2.1 
Results for two different strain-controlled tensile loading simulations (Material 3 in 
Figure 2.29). 

1st Numerical simulation (,Il.€ = €u/2) 
Increment Stress Strain Damage 
j= 1, 2,ete. OJ (kg/em') €j 00-4 ) material 
1 31.75 0.870 1 
2 22.86 1.305 14 
3 22.86 1.740 17 
4 19.05 2.175 20 
5 3.81 2.610 25 

2nd Numerical simulation (A € = €u/4) 
1 31.75 0.8700 1 
2 28.57 1.0875 8 
3 26.67 1.3050 12 
4 24.45 1.5225 15 
5 22,86 1.7400 17 
6 22.86 1.9575 18 
7 19.05 2.1750 20 
8 3.49 2.3925 25 
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Fig. 2.32. Theoretical stress-strain variation and numerical simulations (Material 3 in 
Figure 2.29). 

reported for Material 3 defined in Figure 2.29. The loading is strain-controlled. 
Progressive damage of the material is evaluated and reported for the 25 
segments referred to in equation (2.73). The results are displayed in Figure 
2.32 and compared with the assumed theoretical a versus E constitutive law 
of Material 3. It can be shown that, when the effective elastic modulus, E*, 
varies continuously and the loading increment, ./lE, tends to zero, the theor­
etical bilinear a versus E variation (dashed line of Figure 2.32) can be repro­
duced exactly by the numerical damage-simulation. 

Slow crack growth versus fast crack propagation. In order to evaluate the 
crack growth increment at each loading step, the Strain Energy Density 
Theory will be applied, as proposed by Sih [3-5]. Sub critical crack growth 
is assumed to follow the condition 

or or 

(2.74) 

If the process leads to global instability, then the inequalities 

S 1 < S2 < ... < Sj < ... < Sc or S; (2.75a) 

rl < r2 < ... < rj < ... < rc or r; (2.75b) 

will hold. In situations where fracture comes to arrest, the following shall 
apply: 
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(2.76a) 

71 > 72 > ... > 7j > ... > 70 or 7~ (2.76b) 

The unstable crack growth increment is !::;a = 7; and crack arrest increment 
,!::;a = 7~. At the onset of rapid crack propagation, Sc is related to KIC by 
equation (1.69). 
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Three-point bending of slab with edge crack 

3.1. Step-by-step analysis of material damage and crack growth 

A beam with square cross-section simply supported at the ends, cracked and 
loaded in the middle is considered in Figure 3.1 with the initial sizes shown. 
Geometrically similar specimens will also be considered by multiplying all 
the dimensions by the same constant factor in order to investigate the effect 
of scaling on the mechanics of fracture. 

Because of symmetry, only left half of the specimen in Figure 3.1 needs 
to be analyzed. The finite element mesh used for the specimen is given in 
Figure 3.2. The Axisymmetric/Planar Elastic Structures (APES) finite element 
program [1] is applied at each loading increment. This is a computer program 
that incorporates the 12-noded quadrilateral isoparametric elements allowing 
for cubic displacement fields and quadratic stress and strain fields within 
each element. The ,-1 strain energy density singularity in the vicinity of the 
crack tip is embedded in the solution by the use of 1/9 to 4/9 nodal spacing 
on the element sides adjacent to the crack tip. A total of 309 nodes and 52 
elements are used and a condition of plane strain is assumed. 

The damage-crack model developed in [2-4] will be employed in which 
elastic unloading is assumed. The load is transmitted to the specimen via the 
deflection 0, Figure 3.3, such that the softening stage can be traced by 
controlling the strain in the test. The P versus 0 relationship in Figure 3.3 
corresponds to that for Material 1 in Figure 2.29 and for a constant deflection 
increment, ~o = 4 X 10-3 cm. For the first step, the stiffness is only 6.21% 
lower than the original one. Such a decrease is mostly due to material damage 
at the crack tip. At the second step, the departure from linearity becomes 
more significant. The P versus 0 curve begins to bend appreciably to the right 
at the third step and reaches a maximum_ The segments AD and DT in Figure 
3.3 represent the decreases in the secant stiffness due to material damage 
and crack growth, respectively. At the fourth step, the load P decreases and 
the tangent stiffness becomes negative. This is due to the widening of the 
damage zone and crack extension, which make the specimen more and more 
flexible. At this state, the contributions of material damage and crack growth 
to the secant stiffness decrease are almost the same. At the fifth and sixth 
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Fig. 3.1. Three-point bending fracture specimen. 
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Fig. 3.2. Finite element idealization of the three-point bending fracture specimen in 
Figure 3.1. 
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Fig. 3.3. Typical schematic relation of load versus deflection of three-point bending 
specimen. 
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steps, the load continues to decrease while the influence of crack growth 
increases sharply. When ti = 24 X 10-3 cm, the load carried by the specimen 
is only one fifth of the maximum, while the crack has extended two thirds 
of the specimen width, b. 

Each loading step is the result of two applications of the APES program. 
More precisely, point A in Figure 3.3 is obtained by a linear extrapolation 
from the preceeding point on the P versus ti curve. The point A then drops 
down to D due to material damage followed by point D going further down 
to T as a result of crack growth. Finite element meshes are adjusted for each 
crack growth increment. In Figure 3.4, the meshes and the deformed con­
figurations related to the case of deflection increment Llti = 1 x 10-3 cm, 
are illustrated. 

The five cases analyzed in this chapter are summarized in Table 3.1. The 
three materials in Figure 2.29 and three different loading increments are 
considered. The load-deflection values and the crack growth increments are 
reported in Table 3.2. In Figures 3.5 to 3.9, the sequences of the meshes 
utilized in the loading process description are displayed for each one of the 
cases in Table 3.1. The number n inside each element indicates the level of 
damage according to equation (2.73). The undamaged elements with 
d Wid V < ~ 0u€u are not numbered. In compression, the material is assumed 
to be elastic, with the initial Young's modulus, E. 

In what follows, the damage around the crack tip will be analyzed. Referring 
to the ith element in accordance with Kachanov's [5] idea of reduction in 
the elastic modulus, the parameter d i may be defined: 

E-E~ ___ I 

E 
(3.1) 

A damage zone prevails such that the coordinates of its center are given by 

~x·d·A· . I I I ~YidiAi 
1 I 

xn 
~d·A-

Yn 
~d·A-. , , . , , 

(3.2) 
1 I 

where Xi and Yi are the coordinates of the centroid and Ai the area of the 
ith finite element. It follows that the following components of the inertia 
tensor may be defined: 

(3.3a) 

(3.3b) 
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Fig. 3.4. Finite element meshes and deformed configurations related to Case No.5 in 
Table 3.1. 
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TABLE 3.1. 
The five cases analyzed in this chapter, changing material properties and deflection 
increments. 

Case no. Material Deflection increment Symbol 
Ao 00- 3 cm) 

I (1) 1 4 • 
11 (2) 2 4 0 

III (3) 3 4 0 

IV (4) 3 2 0 

V (5) 3 10. 

TABLE 3.2. 
Load, deflection and crack growth increment at each loading increment and for each 
case in Table 3.1. 

Case no. (1) 
Increment Load Deflection Crack growth increment 
j= 1, 2,etc. Pj (kg) OJ 00- 3 cm) Aaj (em) 
1 574 4 0.088 
2 967 8 0.089 
3 996 12 0.476 
4 706 16 1.346 
5 400 20 1.667 
6 238 24 1.603 

Case no. (2) 
1 564 4 0.157 
2 828 8 0.480 
3 572 12 1.688 
4 276 16 2.000 

Case no. (3) 
1 528 4 0.420 
2 582 8 1.408 
3 287 12 2.190 

Case no. (4) 
1 302 2 0.069 
2 521 4 0.421 
3 566 6 0.809 
4 384 8 1.533 
5 166 10 2.000 

Case no. (5) 
1 152 1 0.023 
2 301 2 0.069 
3 426 3 0.166 
4 483 4 0.444 
5 500 5 0.506 
6 392 6 1.110 
7 273 7 1.208 
8 119 8 1.629 



www.manaraa.com

CASE No (1) 

I n~1 
a1- 5 088 em 

I· '1 51 =4 x 10~3cm 

P1=-574kg 

I t6Jitl 

33 - 5 653 em 
'1 

a4 =6gggcm 
·1 

52 = 8 x 1O- 3cm 

P2= 967 kg 

53 = 12 x 1O- 3cm 

P3 ;:0:996 kg 

I I 
054 = 16 x 1O- 3cm 

P4 =706kg 

~1411 
35= 8 666 em 

55 = 20 x 10'· 3cm 

P5 =400kg 

[GIa111 
I 56 = 24 x 1O- 3cm 

PS =238kg 

73 

Fig. 3.5. Sequences of the meshes utilized in the loading process description; the number 
n inside each element indicates the level of damage according to equation (2.73). Case 
No.1 in Table 3.1. 

(3.3c) 

The trajectories of the damage center and the principal damage directions 
during the loading process are plotted in Figure 3.10 for each one of the 
cases in Table 3.1. These results are in close agreement with the predictions 
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Fig. 3.6. The same as in Figure 3.5. Case No.2 in Table 3.1. 
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Fig. 3.7. The same as in Figure 3.5. Case No.3 in Table 3.1. 
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Fig. 3.8. The same as in Figure 3.5. Case No.4 in Table 3.1. 
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made from the strain energy density theory. Computing the strain energy 
density factor, S, as a function of (J measured from the line of expected 
crack growth as shown in Figure 3.10, the relative minimum of S can be 
shown to correspond with (J = 0° and the relative maximum with (Jo = 
cos-1(1 - 2v). According to the S-criterion [6, 7] , the former refers to the 
direction of macrocrack growth and the latter to the direction of maximum 
yielding. * For v = 0.1, an angle of (Jo = 36.8° is predicted. The agreement 
is quite good for small values of r. This is to be expected as the asymptotic 

* The yield criterion based on (dWjd V)max will be in conflict with the results obtained 
from plasticity which adopts the von Mises yield condition using the distortion energy 
component only. The present model based on elastic unloading [2, 3] presents no 
conceptual difficulties. 
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Fig. 3.9. The same as in Figure 3.5. Case No.5 in Table 3.1. 
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Fig. 3.10. Trajectories of the damage center and principal damage directions during the 
loading process of a three-point bending fracture specimen. 

stress solution is limited to ria < 0.1. Yielding can thus be viewed as damage 
with loss of material stiffness. 

The distributions of the strain energy density function, (dW/dV), and of 
the effective critical strain energy density function, (dW/dV);, over the whole 
ligament are given in Figure 3.11. They relate to the second loading increment 
pertaining to Case (3). While (dW/dV) decreases away from the crack tip 
inside each finite element, (dW/d V); increases monotonically. In consistence 
with Beltrami's criterion, the present analysis assumes that the material 
elements fail when (dW/dV) ;;;;'(dW/dV);. The crack growth increment 
Lla is then determined from the intersection of dW/dV with (dW/dV); 
curves, Figure 3.11. The positive jumps of the strain energy density function, 
(dW/dV), are due to the fact that the less damaged elements have a higher 
stiffness and, therefore, a higher load-bearing capacity. Such jumps represent 
a discrete softening effect ahead of the crack tip. 

3.2. Effect of material properties 

The numerical results will be discussed in connection with the a versus € 

curves in Figure 2.29. The load-deflection responses for the deflection in­
crement Llo = 4 X 10-3 cm, are displayed in Figure 3.12. The shape of the 
curves is similar. The difference is that the area under them is approximately 
proportional to the area under the corresponding a versus € curve. 
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Fig. 3,11. Distributions of the strain energy density function, (dW/dV), and of the 
effective critical strain energy density function, (d Wid V)~, over the whole ligament of a 
three-point bending fracture specimen. 

In Figure 3.13, the ratio of stiffness loss by material damage to total 
stiffness loss (by material damage and crack growth) appears as a function of 
the imposed deflection, O. Such a ratio is equal to the ratio AD/AT in Figure 
3.3. The general trend is that it tends to zero for very small as well as for very 
large deflections. For intermediate deflections, these curves present a maximum 
which increases by increasing the critical strain energy density of the material, 

1400 
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Fig. 3.12. Load-deflection diagrams for three different materials (see Figure 2.29) and 
A8 = 4 X 10- 3 cm. 
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Fig, 3.13. Ratio of stiffness loss by material damage to total stiffness loss as a function 
of the imposed deflection, for three different materials (see Figure 2.29) and tJ./j = 
4 X 10- 3 em. 

(dW/d V)c' In fact, for €f -+ 00, the material becomes elastic-perfectly plastic 
and only material damage occurs, since (dW/dV)c and (dW/dV); tend to 
infinity. It is therefore impossible for crack growth to occur. 

In Figure 3.14, the load P is plotted against the crack growth, (a -ao). 
At the beginning, the load increases while the crack grows. Then, after 
reaching a maximum, the load decreases. The peaks represent the transition 
between stable and unstable structural behavior. For a relatively large structure, 
crack instability precedes the traditional structural instability and Linear 
Elastic Fracture Mechanics can be applied. When the structure is relatively 
small, as in the case of fracture toughness specimens, structural collapse 
precedes unstable crack propagation. It is interesting to observe that after 
the first 2 cm of crack growth the post-collapse structural behavior is not 
significantly affected by the variation in (dW/dV)c, Figure 3.14. 

In Figure 3.15, the values of the strain energy density factor, S, are plotted 
against the crack growth, (a - ao). These are known as the SR-curves which 
are straight lines. The results correspond to small crack growth increments 
during which time P is still increasing in a stable fashion. The straight line 
relationship between S and a is essential as it allows the development of 
simple design rules. 

The higher (dW/d V)c is, the steeper the S versus a line variation appears 
to be. The S versus a lines tend to rotate counterclockwise as (d Wid V)c 
increases for the tougher material. Since the Sc values for Materials 1,2 and 
3 are different, their intersections with the S versus a lines will also differ. 
It can easily be shown that more sub critical crack growth could be attained 
by Material 1 if this possessed the highest Sc value. The strain energy density 
factor rate, dS/da, has the same physical dimensions as those of the 
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strain energy density function. It always has a lower value than the corre­
sponding (dW/dV)c, Table 3.3. The ratio (dS/da)/(dW/dV)c decreases as 
material damage as compared with crack growth becomes more dominant. 

In Figure 3.16, the maximum load P max' is plotted against the softening 
strain (cf - cu ), and the case (cf - cu ) = 1 X 10-4 is included for which a 
condition of elastic-perfectly brittle collapse is attained at the ligament. The 
points corresponding to (€f - cu ) = 8 x 10-4 and 16 x 10-4 are above the 
elastic-perfectly plastic limit load. This is due to the reduction of structural 
size. In this case, the Limit Analysis concept in Section 1.1 can be applied. It 
states that a size increase of a perfectly plastic structure cannot produce a 
decrease in the limit load. 

3.3. Load step influence on crack growth 

The load step effects contribute to the increase in the strength of cement 
composites when the loading rate is increased. This effect will be illustrated 
by varying the load step in the analysis. In Figure 3.17, the load-deflection 
curves are displayed for Material 3 and three different deflection increments 
as flo = 4 x 10-3 , 2 x 10-3 , and 1 x 10-3 cm. The maximum load, P max' 

TABLE 3.3. 
Comparison between strain energy density factor rate, dS/da, and critical value of the 
strain energy density function, (d Wid V)c' 

Material 

(dW/dV)c [kg/cm' X 10- 3 ] 

dS/da [kg/em' X 10- 3 ] 

1 

26.90 
7.54 

2 

14.14 
4.60 

3 

7.77 
4.15 
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Fig. 3.21. Strain energy density factor versus crack growth for three different loading 
increments and Material 3 (see Figure 2.29). 

increases by increasing the deflection increment. In Figure 3.18, P max is 
plotted against the step ll8 and the cases ll8 = 8 x 10-3 and 16 x 10-3 cm, 
are also included. In this range, P max tends to increase and then decrease. The 
36% difference between the maxima with ll8 = 8 x 10-3 cm and ll8 = 

1 x 10-3 cm reflects the well known increase in flexural strength of cement 
and mortar when the strain rate increases [8] . 

In Figure 3.19, the ratio of stiffness loss by material damage to total 
stiffness loss is plotted as a function of the deflection, 8. It renders the 
same trends as discussed earlier in section 3.2, i.e., damage exceeds crack 
growth only for intermediate crack lengths. Moreover, the stiffness loss by 
crack growth tends to overcome that by material damage when the load 
step, ll8, decreases. 

In Figure 3.20, the load, P, is plotted against the crack growth, (a -aD). 
The peaks of these curves represent the transition between stable and unstable 
structural behavior and not necessarily between stable and unstable crack pro­
pagation. Also, the load-crack growth diagram is not significantly affected by 
the load step, ll8, in the post-collapse condition. In Figure 3.21, the values of 
the strain energy density factor, S, are plotted against the crack growth. The 
higher the deflection increment, ll5, is, the steeper is the S versus a line. 

3.4. Scaling of geometrically similar specimens 

Because material damage and crack growth occur in a non-self-similar fashion 
for each step of loading, specimens of different sizes appear to behave 
differently. This well-known size effect will be analyzed by the results obtained 
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on the three-point bending specimen. A dimensionless load parameter may be 
defined as 

P [0 E au I tao] 
(dW)b 2 = n b'(dW) '(dW) ,v'b'b'b 

dV c dV c dV c 

(3.4) 

This is similar to the Buckingham's theorem for physical similitude and model 
scaling. In equation (3.4) the material toughness, (dW/dV)e, and specimen 
width, b, have been used as the fundamental quantities. The dimensionless 
load parameter may be regarded as a function of the dimensionless deflection 
parameter o/b only, if all others are kept constant. 

In the same way, it is possible to define a dimensionless strain energy 
density factor: 

S ,,[a E au I tao] 
(
dW) b = L... b' (dW) , (dW) ,V, b' b'b 

dV e dV e dV e 

(3.5) 

By assuming the function ~ to be linear in alb [9, 10], the following is 
obtained: 

dS/da a - ao So ---'--- -- + ---
(dW/dV)c b 

(3.6) 

which may be rearranged into the form 

(3.7) 

The constants A and B are dimensionless and scale independent. It follows 
that the slope of the S versus a diagram is constant, i.e., dS/da = constant 
and that the intercept, So, is proportional to the scale b. 

Figures 3.22(a) to (e) inclusive give the straight line plots of S versus 
(a - ao) for different combinations of materials and load steps with b varying 
from 15 em upwards. The critical crack growth decreases with increasing 
specimen size. For Case (3), with Se = 8 X 10-3 kg/em, the limiting size 
b = 222 em is obtained, Figure 3.22(c). Beyond this size, stable crack growth 
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Fig. 3.22. (a) Straight line plots of strain energy density factor versus crack growth, 
varying the specimen size scale. Case No.1 in Table 3.1. (b) The same as in Figure 3.22(a). 
Case No.2 in Table 3.1. (c) The same as in Figure 3.22(a). Case No.3 in Table 3.1. 
(d) The same as in Figure 3.22(a). Case No.4 in Table 3.1. (e) The same as in Figure 
3.22(a). Case No.5 in Table 3.1. 

ceases to occur and failure corresponds to unstable crack· propagation or 
catastrophic fracture. 

The relations between P/(dW/dV)cb2 and 8/b are summarized in Figures 
3.23. The vertical lines with arrows indicate the limiting values of 8/b as the 
critical strain energy density factor, Sc = 8 X 10-3 kg/cm, is reached. This 
corresponds to K rc = 144.35 kg/cm3/ 2 which is typical of concrete [11, 12] . 
It is clear that crack instability occurs for smaller dimensionless deflections 
of the specimen as size b is increased. Without considering unstable crack 
propagation, in case (3) the maximum load can be estimated from the relation 
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Fig. 3.23. (a) Dimensionless load-deflection diagram. Case No. I in Table 3.1. (b) Di­
mensionless load-deflection diagram. Case No.2 in Table 3.1. (c) Dimensionless load­
deflection diagram. Case No.3 in Table 3.1. (d) Dimensionless load-deflection diagram. 
Case No.4 in Table 3.1. (e) Dimensionless load-deflection diagram. Case No.5 in Table 
3.1. 

(dWl 2 P max = 332.90 - b 
dV c 

(3.8) 

Case (3) shows that structural instability occurs before unstable crack propa­
gation only for b";; 15 em, Figure 3.23(c). For b = 30 em, softening behavior 
is not present and the crack starts spreading in an unstable manner when the 
load P is still in the ascending stage. The critical length, acr , for each size can 
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TABLE 3.4(a-e). 
(a) Maximum load for different size scales and according to the various theories: Strain 
Energy Density Theory, Linear Elastic Fracture Mechanics, Limit Analysis. Case No. 1 
in Table 3.1. (b) The same as in Table 3.4(a). Case No.2 in Table 3.1. (c) The same as in 
Table 3.4(a). Case No.3 in Table 3.1. (d) The same as in Table 3.4(a). Case No.4 in 
Table 3.1. (e) The same as in Table 3.4(a). Case No.5 in Table 3.1. 

Case no. (1) 

Size b, cm 15 30 60 120 

Pr,k (SEDT), kg 1000 3920 10400 28380 
P 2k (LEFM), kg 1254 3548 10034 28380 
P~ (Limit analysis), kg 531 2124 8496 33984 
P ~k/pM>ax ratio 0.80 1.10 1.04 1.00 
PMh/pMh ratio 0.42 0.60 0.85 1.20 

Case no. (2) 

Size b, cm 15 30 60 120 240 

p('k (SEDT), kg 825 3400 11137 32000 80270 
pr.k (LEFM), kg 1254 3548 10034 28380 80270 :E:ax (Limit analysis), kg 531 2124 8496 33984 136000 

I /11 2) ratio 0.66 0.96 1.11 1.13 1.00 PnF /pfof' ratio 0.42 0.60 0.85 1.20 1.69 max max 

Case no. (3) 

Size b, cm 15 30 60 120 222 

Phlk (SEDT), kg 575 2170 7625 25600 71480 
p(2k (LEFM), kg 1254 3548 10034 28380 71480 
J>¥.F Q,-imit analysis), kg 531 2124 8496 33984 136000 
P ~ax/Phlk ratio 0.46 0.61 0.76 0.90 1.00; 
p(.i>ax/p(~k ratio 0.42 0.60 0.85 1.20 1.90 

Case no. (4) 

Size b, cm 15 30 60 120 240 

p('k (SEDT), kg 562 2250 7826 25600 80270 
PIT) (LEFM), kg 1254 3548 10034 28380 80270 pf (Limit analysis), kg 531 2124 8496 33984 136000 

P 'k/p*k ratio 0.45 0.63 0.78 0.90 1.00 
P 3) /P 2) ratio 0.42 0.60 0.85 1.20 1.69 max max 

Case no. (5) 

Sizeb, em 15 30 90 180 375 

p('k (SEDT), kg 500 2000 17190 61200 156800 
pf>k (LEFM), kg 1254 3548 18400 52140 156800 
~ax (Limit analysis), kg 531 2124 19116 76500 332000 

I IP(2) ratio 0.40 0.56 0.93 1.17 1.00 
Ptiklp1lk ratio 0.42 0.60 1.04 1.47 2.12 
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be found from the S versus a plots on Figure 3.22(c). A similar set of curves 
are produced for Material 3 with 118/b = 0.65 x 10-4 and they are given in 
Figures 3.22(e) and 3.23(e). They basically show that, with the same critical 
value Sc, the limiting specimen size is increased from b = 222 to 375 cm as 
the ratio 118/b is changed from 2.6 X 10-4 to 0.65 X 10-4. The interaction 
of loading step with specimen size is exhibited. 

It is now apparent that the quantity Sc/(dW/dV)cb must also enter into the 
dimensional analysis in equation (3.4). In fact, for estimatingPmax , it suffices 
to consider 

O(S*) (3.9) 

in which S* is a dimensionless quantity: 

b 
(3.10) 

Hence, all geometically similar structures can be regarded as governed by S*. 
This dimensionless quantity can be used to predict the load versus deflection 
behavior of all specimen sizes. The amount of sub critical crack growth is 
obviously size-dependent in addition to other influences such as loading 
steps and material properties [4] . 

It is also of interest to discuss the present findings in relation to the 
maximum load P'<;~x resulting from the well-known ASTM-formula [13] : 

PI (ao) 
K] = tb312 f b (3.11) 

where 

() ( )
112 ()312 ()5/2 f :0 2.9 a; _ 4.6 abO + 21.8 a; 

( )
7/2 ()912 

_ 37.6 :0 + 38.7 :0 (3.12) 

The predicted values of Pg~x from a linear elastic limit analysis can be 
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Fig. 3.24. (a) Maximum load predicted by Strain Energy Density Theory and by Limit 
Analysis referred to the critical load from LEFM. Case No.1 in Table 3.1. (b) The same 
as in Figure 3.24(a). Case No.2 in Table 3.( (c) The same as in Figure 3.24(a). Case 
No.3 in Table 3.1. (d) The same as in Figure 3.24(a). Case No.4 in Table 3.1. (e) The 
same as in Figure 3.24(a), Case No.5 in Table 3.1. 

computed as 

p(3) 
max (3.13) 

where the ligament size at collapse is assumed to be (b - ao). All the maximum 
loads obtained by the various approaches are reported in Tables 3.4. 
Normalizing the results pg,!x and Pg!x, obtained by the present approach 
and by the limit analysis respectively, with Pg!x, recommended by ASTM, 
and plotting the ratios against b, Figures 3.24 give a comparison between 
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the various theories. The horizontal line P~~x/Pg~x and Pg~x/P~~x equal to 
100% represents the limiting case of ASTM where failure coincides totally 
with brittle fracture. The curves of Figures 3.24 give the maximum failure 
load involving both structural collapse and brittle fracture. When the specimen 
size is small, the simple formula in equation (3.13) gives good prediction 
based on ultimate strength only. On the other hand, when the specimen size 
is large, the ASTM·formula in equation (3.11) gives good prediction based 
on Linear Elastic Fracture Mechanics only. The two extreme situations have 
thus been connected [14,15]. 
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Center cracked slab in tension 

4.1. Introduction 

A center cracked slab in tension is analyzed, Figure 4.1. The sizes shown in 
Figure 4.1 with t = 15 cm will be scaled such that all dimensions will be 
multiplied by a constant factor. The slab is assumed to be made of Material 3 
defined in Figure 2.29. On account of symmetry, only one fourth of the slab 
is analyzed. The finite element mesh used for the specimen is shown in 
Figure 4.2. As in chapter 3, the APES finite element program [1] will be 
used. 

The damage-crack growth model of Sih and Matic [2, 3] will be applied 
to the tension test specimen subjected to a strain-controlled loading process. 
The cases investigated are summarized in Table 4.1. Three different initial 
crack lengths and three different strain increments are considered. The 
stress-strain values and the crack growth increments are given in Table 4.2, 
while the values of crack length and strain energy density factor are reported 
in Table 4.3. In Table 4.4, the level of damage in each element is given 
according to equation (2.73) for each strain increment. 

The trajectories of the damage center, defined in chapter 3, are shown in 
Figure 4.3 for each one of the cases in Table 4.1. The variation in initial crack 

1 ! ! ! ! ! I a 

E 
" g 
II 

Co< 

2b = 30 em 

Fig. 4.1. Center cracked slab in tension. 
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Fig. 4.2. Finite element idealization of the center cracked slab in Figure 4.1 (a); zoom 
area (b). 

length and loading step do not appear to influence the trajectory. Similar to 
the results in Figure 3.10, the direction of maximum strain energy density 
coincides with that of maximum damage, especially for small values of dis­
tance r from the crack tip. 

4.2. Influence of initial crack length 

The numerical results will be discussed by varying the initial crack length. The 
stress-strain responses for the strain increment.:l€ = 1.67 X 10-5 , are displayed 

TABLE 4.1. 
The five cases analyzed in this chapter, changing initial crack length and loading in­
crements 

Case no. 

1(1) 
II (2) 

III (3) 
IV (4) 
V (5) 

Initial crack length 
oo/b 

0.3 
0.4 
0.5 
0.3 
0.3 

Strain increment Symbol 
t:.€ (10-') 

1.67 • 
1.67 0 

1.67 0 

3.33 0 

6.67 l:; 
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TABLE 4.2. 
Stress, strain and crack growth increment at each loading increment and for each case in 
Table 4.1 

Case No. (1) 
Increment Stress Strain Crack growth increment 
j = 1, 2, etc. OJ (kg/em') Ej (10-') t:..aj (em) 

1 5.65 1.67 0.036 
2 11.22 3.33 0.106 
3 16.35 5.00 0.388 
4 19.88 6.67 0.774 
5 17.10 8.33 1.959 

Case No. (2) 
1 5.33 1.67 0.044 
2 10.50 3.33 0.142 
3 14.94 5.00 0.435 
4 16.28 6.67 1.432 
5 9.95 8.33 2.731 

Case No. (3) 
1 4.92 1.67 0.051 
2 9.58 3.33 0.201 
3 13.23 5.00 0.455 
4 12.72 6.67 1.588 

Case No. (4) 
1 11.24 3.33 0.106 
2 21.22 6.67 0.458 
3 18.48 10.00 2.881 
4 2.05 13.33 6.707 

Case No. (5) 
1 21.40 6.67 0.449 
2 11.08 13.33 4.637 

in Figure 4.4. The load carrying capacity decreases as the initial crack length 
is increased. In Figure 4.5, the ratio of stiffness loss by material damage 
to total stiffness loss (by material damage and crack growth) is plotted against 
the strain, €. Such a ratio increases from zero, at low strain, to a plateau at 
about 50%. The difference in initial crack length does not influence this 
behavior. 

In Figure 4.6, the stress a is displayed against the crack growth, 2(a - ao). 
For the first steps, the stress increases while the crack grows. After reaching 
a maximum, the stress decreases and attains the value zero when the whole 
ligament is separated. 

In Figure 4.7, the strain energy density factor, S, is plotted against the 
crack growth 2(a -ao). The values of S for small crack growths give a linear 
S versus a variation. The slopes of the S versus a lines increased with the value 
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TABLE 4.3. 
Crack length and strain energy density factor at each loading increment and for each case 
in Table 4.1. 

Case No. (1) 
Increment Crack length Strain energy density factor 
j = 1, 2, etc. 2aj (cm) Sj (kg/cm X 10- 3 ) 

1 9.072 0.280 
2 9.284 0.748 
3 10.060 1.304 
4 11.548 1.130 
5 15.466 2.860 

Case No. (2) 
1 12.088 0.342 
2 12.372 0.924 
3 13.242 0.635 
4 16.106 3.503 
5 21.568 6.936 

Case No. (3) 
1 15.102 0.396 
2 15.504 1.183 
3 16.414 0.664 
4 19.590 6.352 

Case No. (4) 
1 9.212 0.748 
2 10.128 0.669 
3 15.890 4.808 
4 29.304 9.792 

Case No. (5) 
1 9.898 0.655 
2 19.172 21.005 

of the initial crack length. With longer initial cracks the crack instability is 
reached after shorter stable crack growths. 

4.3. Loading step variation 

In Figure 4.8, the stress-strain curves are displayed for the dimensionless 
initial crack length ao/b = 0.3 and three different strain increments of .:le = 
1.67 x 10-5 , 3.33 X 10-5 and 6.67 x 10-5 • The maximum stress tends to 
increase slightly by increasing the strain increment. The ratio of stiffness loss 
by material damage to total stiffness loss as a function of strain, €, is given in 
Figure 4.9. The influence of material damage increases when the crack 
advances and a stationary value of the ratio is eventually reached. The stress 
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TABLE 4.4(a). 
Level of damage according to equation (2.73) in each finite element and at each loading 
increment. Case No.1 in Table 4.1. 

Damage element 
reference number 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 

TABLE 4.4(b) 

2 

10 

Increment j = 1, 2, etc. 
3 

23 
7 
9 

7 

The same as in Table 4.4(a). Case No.2 in Table 4.1. 

Damage element 
reference number 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

2 

14 

Increment j = 1, 2, etc. 
3 

25 
9 

14 
3 
3 

11 

4 

25 
14 
25 
14 

8 

21 

4 

4 
5 

25 
15 
25 
18 
11 

25 

5 

25 
14 
25 
25 
13 

25 

10 
20 
12 

5 

3 
5 
8 
4 

3 
5 
2 

25 
15 
25 
25 
15 

25 
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TABLE 4.4(b) (CONTINUED) 

Damage element 
reference number 

12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 

TABLE 4.4(c) 

1 
Incrementj = 1, 2, etc. 
234 

6 
10 
2 

The same as in Table 4.4(a). Case No.3 in Table 4.1. 

Damage element 
reference number 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

1 
Incrementj = 1, 2, etc. 

2 3 

17 
2 

25 
12 
18 
6 
5 

15 

4 

25 
17 
25 
22 
13 

25 

7 
13 

3 

2 

5 

12 
24 
16 
4 

11 
11 

4 

5 
10 

3 
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TABLE 4.4(c). (CONTINUED) 

Damage element Increment j = 1, 2, etc. 
reference number 1 2 3 4 

25 
26 
27 2 

TABLE 4.4(d). 
The same as in Table 4.4(a). Case No.4 in Table 4.1 

Damage element Increment j = 1, 2, etc. 
reference number 1 2 3 4 

1 10 25 25 25 
2 15 25 25 
3 18 25 25 
4 8 25 25 
5 9 21 25 
6 
7 
8 
9 4 5 14 

10 15 25 25 
11 
12 
13 
14 3 16 21 
15 2 21 25 
16 14 25 
17 8 25 
18 9 25 
19 12 25 
20 10 16 
21 
22 
23 
24 
25 4 8 
26 8 16 
27 9 20 
28 7 13 
29 5 8 
30 3 
31 
32 
33 
34 
35 
36 3 3 
37 5 5 
38 3 3 
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TABLE 4.4(d) (CONTINUED) 

Damage element 
reference number 

Increment; = 1,2, etc. 

39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 

TABLE 4.4(e). 

1 2 3 

The same as in Table 4.4(a). Case No.5 in Table 4.1. 

Damage element Increment; = 1,2, etc. 
reference number 1 2 

1 25 25 
2 17 25 
3 15 25 
4 7 25 
5 9 25 
6 6 
7 
8 
9 6 15 

10 14 25 
11 
12 
13 3 
14 3 23 
15 2 25 
16 21 
17 16 
18 17 
19 20 
20 18 
21 2 
22 
23 
24 3 
25 13 
26 16 
27 17 

2 

2 
2 
2 
2 

4 

2 

2 
2 
2 
2 
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TABLE 4.4(e) (CONTINUED) 

Damage element 
reference number 

28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 

j 

Incrementj = I, 2, etc. 
I 2 

16 
13 
10 

6 
3 
6 
8 

10 
12 
14 
12 
11 
10 

9 
8 
9 

10 
10 
11 
11 
11 
11 
10 
10 
10 

o 2 3 4 

DISTANCE r lem) 

99 

Fig. 4.3. Trajectories of the damage center during the loading process of a center cracked 
slab in tension. 
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Fig. 4.5. Ratio of stiffness loss by material damage to total stiffness loss as a function of 
strain, for three different initial crack lengths and D.e = 1.67 X 10-'. 
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Fig. 4.10. Stress-crack growth diagrams for three different loading increments and 
ao/b = 0.3. 

a as a function of crack growth 2(a -ao) is shown in Figure 4.10. Note that 
the results are not sensitive to changes in the load step .:l€. 

In Figure 4.11, the values of strain energy density factor, S, are plotted 
against crack growth. An increase in the strain increment .:l€ tends to increase 
the slope of the S versus a line. As in the case of the three point bending 
test in chapter 3, larger load steps tend to decrease sub critical crack growth 
and enhance global instability. 
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Fig. 4.11. Strain energy density factor versus crack growth for three different loading 
increments and ao/b = 0.3. 
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Fig. 4.12. (a) Straight line plots of strain energy density factor versus crack growth, 
varying the specimen size scale. Case No.1 in Table 4.1. (b) The same as in Figure 
4.12(a). Case No.2 in Table 4.1. (c) The same as in Figure 4.12(a). Case No.3 in Table 
4.1. (d) The same as in Figure 4.12(a). Case No.4 in Table 4.1. (e). The same as in 
Figure 4.12(a). Case No.5 in Table 4.1. 
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Fig. 4.13. (a) Stress-strain diagrams, varying the specimen size scale. Case No.1 in Table 
4.1. (b) The same as in Figure 4.13(a). Case No.2 in Table 4.1. (c) The same as in 
Figure 4.13(a). Case No.3 in Table 4.1. (d) The same as in Figure 4.13(a). Case No.4 in 
Table 4.1. (e) The same as in Figure 4.13(a). Case No.5 in Table 4.1. 

4.4. Size scale effect of center cracked slab 

Figures 4.l2(a) to (e) inclusive give the straight line plots of S versus crack 
growth for different cases by increasing b from 15 cm and larger. As in 
section 3.4, the critical crack growth decreases with increasing specimen 
size. For Case (1), with Sc = 8 X 10-3 kg/cm, the limiting size is b = 240 cm, 
Figure 4.l2(a). Beyond this size, stable crack growth ceases to occur and 
failure corresponds to unstable crack propagation or catastrophic fracture. 
Figures 4.l3(a) to (e) inclusive show the relations between stress and strain. 
The vertical lines with arrows indicate the limiting values of e as the critical 

14 
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TABLE 4.5. 
(a) Maximum stress for different size scales and according to the various theories: Strain 
Energy Density Theory, Linear Elastic Fracture Mechanics, Limit Analysis. Case No.1 in 
Table 4.1. (b) The same as in Table 4.5(a). Case No.2 in Table 4.1. (c) The same as in 
Table 4.5(a). Case No.3 in Table 4.1. (d) The same as in Table 4.5(a). Case No.4 in 
Table 4.1. (e) The same as in Table 4.5(a). Case No.5 in Table 4.1. 

Case no. (1) 

Size b, em 15 30 60 120 240 

ag1x (SEDT), kg/em' 19.88 19.88 19.88 16.72 9.13 
a~1x (LEFM), kg/em' 36.35 25.70 18.18 12.85 9.13 
ag1x (Limit analysis), kg/em' 22.33 22.33 22.33 22.33 22.33 
ar,1x/ a~1x ratio 0.55 0.77 1.09 1.30 1.00 
aci.1x/ a~1x ratio 0.61 0.87 1.23 1.73 2.44 

Case no. (2) 

Size b, em 15 30 60 120 240 

ag1x (SEDT), kg/em' 16.28 16.28 15.45 13.38 7.43 
a~1x (LEFM), kg/em' 29.70 21.03 14.87 10.51 7.43 
ag1x (Limit analysis), kg/em' 19.14 19.14 19.14 19.14 19.14 
ar,1x/ ahl>ax ratio 0.55 0.77 1.03 1.27 1.00 
a 3) /a(') ratio 0.64 0.91 1.29 1.82 2.57 max max 

Case no. (3) 

Size b, em 15 30 60 120 240 

ag1x (SEDT), kg/em' 13.23 11.47 10.31 9.05 6.23 
a~1x (LEFM), kg/em' 24.93 17.63 12.46 8.81 6.23 
ag1x (Limit analysis), kg/em' 15.95 15.95 15.95 15.95 15.95 
ag1x/ a~1x ratio 0.53 0.65 0.83 1.03 1.00 
ag1x/ a~1x ratio 0.63 0.90 1.28 1.81 2.56 

Case no. (4) 

Size b, em 15 30 60 120 240 

ag1x (SEDT), kg/em' 21.22 21.22 21.22 21.22 9.13 
ahl>ax (LEFM), kg/em' 36.35 25.70 18.18 12.85 9.13 
aWax (Limit analysis), kg/em' 22.33 22.33 22.33 22.33 22.33 

ag1x/ a~1x ratio' 0.58 0.82 1.16 1.65 1.00 
ag~x/ a~~x ratio 0.61 0.87 1.23 1.73 2.44 

Case no. (5) 

Size b, em 15 30 60 120 240 

a~ax (SEDT), kg/em' 21.40 21.40 18.00 15.08 9.13 
a~1x (LEFM), kg/em' 36.35 25.70 18.18 12.85 9.13 
ag1x (Limit analysis), kg/em' 22.33 22.33 22.33 22.33 22.33 
af}ax/ a~1x ratio 0.59 0.83 0.99 1.17 1.00 
a 3) /a(') ratio 0.61 0.87 1.23 1.73 2.44 max max 
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Fig. 4.14. (a) Maximum stress predicted by Strain Energy Density Theory and by Limit 
Analysis referred to the critical stress from LEFM. Case No.1 in Table 4.1. (b). The 
same as in Figure 4.14(a). Case No.2 in Table 4.1. (c) The same as in Figure 4.14(a). 
Case No. 3 in Table 4.1. (d) The same as in Figure 4.14(a). Case No.4 in Table 4.1. 
(e) The same as in Figure 4.14(a). Case No.5 in Table 4.1. 
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strain energy density factor, Sc = 8 X 10-3 kg/cm, is reached. Crack instability 
occurs for smaller strains as the size b is increased. This is obvious, since the 
initial crack length ao also increases for a given ratio of ao/b. Case (l) shows 
that structural instability occurs before unstable crack propagation only for 
b:S 80cm, Figure 4.13(a). For b = 120cm, the softening behavior is not 
present and the crack starts spreading in an unstable manner while the stress 
o is still in the ascending stage. 

It is also interesting to consider the maximum stress, o~~x, resulting from 
the Linear Elastic Fracture Mechanics solution [5] : 

(4.1) 

Let o~~x denote the result predicted from the limit analysis: 

0(3) = 0 (1 _ ao ) 
max U b (4.2) 

where the ligament size at collapse is assumed to be 2(b - ao). All the maxi­
mum stresses obtained by the different approaches are reported in Tables 4.5. 
Normalizing the stresses o~~x and o~ax' obtained by the present approach 
and by the limit analysis respectively, with o~~x, obtained through Linear 
Elastic Fracture Mechanics, the results for the different failure modes are 
displayed in Figures 4.14(a) to (e) inclusive. The transition from plastic 
collapse to brittle fracture can be achieved simply by changing the specimen 
size. 

The strain energy density theory has thus enabled the predictions of all 
failure modes between the two extremes of brittle fracture and plastic 
collapse. Smaller specimen tests can thus be performed to predict the behavior 
of larger specimens or structural components. Moreover, the predictions were 
made only using the uniaxial stress and strain data, an accomplishment that 
has not been achieved by the other failure criteria. 
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Off-center compression of slab with 
edge crack 

5.1. Preliminary infonnation 

5 

Further application of the strain energy density theory will be made to the 
problem of a slab with an edge crack subjected to off-center compression 
with b specified as illustrated in Figure 5.1 and t equal to b. The material 
properties for the slab correspond to those of Material 3 in Figure 2.29. The 
grid pattern for the finite element meshes is shown in Figure 5.2 such that 
only one-half of the problem needs to be analyzed on account of symmetry. 
Referring to the damage-crack growth model based on Strain Energy Density 
Theory in [1], the crack growth resistance curves will be developed by 
specifying the vertical displacement {j as the applied load. 
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Fig. 5.1. Off-center compression of slab with edge crack. 
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Fig. 5.2. Finite element idealization of the cracked slab with off-center compression in 
Figure 5.1. The zoom area is the same as in Figure 4.2(b). 
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TABLE 5.1. 
The five cases analyzed in this chapter, changing load eccentricity and loading increments. 

Case no. Eccentricitye/b Displacement increment Symbol 
tJ.o (l0-3 cm) 

I (1) 0.30 4 • 
II (2) 0.35 4 0 

III (3) 0.40 4 0 

IV (4) 0.40 2 0 

V (5) 0.40 D. 

Table 5.1 summarizes the different cases to be investigated. Three different 
eccentricities, e/b, and three different loading (displacement) increments are 
considered. The load-displacement values and the crack growth increments 
are specified in Table 5.2, while the crack lengths and the strain energy 
density factors are reported in Table 5.3. The damage level according to 
equation (2.73) is described in Tables 5.4(a) to (e) inclusive for each loading 
step. 

5.2. Load eccentricity effect 

Numerical results will be presented to study the influence ofload eccentricity, 
e/b. The load-displacement responses for the case Ao = 4 X 10-3 em, are 
displayed in Figure 5.3. The softening behavior is absent when the loading 
eccentricity is very small. The compressive stress field in the ligament tends 
to arrest the crack inhibiting material damage. 

Shown in Figure SA is the ratio of stiffness loss by material damage to 
total stiffness loss (by material damage and crack growth) as a function of the 
displacement, o. This ratio tends to zero for small and large displacements. 
For intermediate displacements, these curves present a maximum which 
tends to increase by decreasing the load eccentricity, e/b. In Figure 5.5, 
the load P is given as a function of the crack growth, (a - ao). For large 
loading eccentricities, e/b = 0.35 and 0040, the load increases and then 
decreases after reaching a maximum. The maximum represents the structural 
instability. For small loading eccentricities, e/b = 0.30, the unstable stage 
disappears and the crack stops since the compressive stress field dominates. 

When the axial force, P, is compressive, a bending moment M = Pe is 
created that tends to open the crack. The total stress-intensity factor can be 
obtained by applying the superposition principle: 

(5.1) 

in which [2,3] 
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TABLE 5.2. 
Load, displacement and crack growth increment at each loading increment and for each 
case in Table 5.1. 

Case no. (1) 
Increment Load Displacement Crack growth increment 
j = 1, 2, etc. Pj (kg) OJ (lO-'cm) Ll.aj (em) 

1 4134 4 0.037 
2 8256 8 0.140 
3 12306 12 0.500 
4 16176 16 0.500 
5 19715 20 0.500 
6 23094 24 0.000 
7 27902 28 0.000 

Case no. (2) 
1 3519 4 0.097 
2 6976 8 0.500 
3 10296 12 1.000 
4 13284 16 1.000 
5 11365 20 2.000 

Case no. (3) 
1 2847 4 0.221 
2 5900 8 0.975 
3 8532 12 1.579 
4 10132 16 2.000 

Case no. (4) 
1 1516 2 0.000 
2 3018 4 0.238 
3 4470 6 0.500 
4 5836 8 1.000 
5 7145 10 1.042 
6 8280 12 1.006 

Case no. (5) 
1 758 1 0.000 
2 1516 2 0.000 
3 2271 3 0.066 
4 3014 4 0.248 
5 3729 5 0.500 
6 4428 6 0.500 
7 5107 7 0.527 
8 5733 8 1.000 

}M) _ M 
K - b3/2 t YM(n (S.2a) 

Kf) = P 
b1!2 t Yp(~) (S.2b) 
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TABLE 5.3. 
Crack length and strain energy density factor at each loading increment and for each 
case in Table 5.1. 

Case no. (1) 
Increment Crack length Strain energy density factor 
i = 1, 2, etc. OJ (cm) Sj (kg/cm X 10-') 

1 5.037 0.287 
2 5.177 0.953 
3 5.677 2.265 
4 6.177 2.157 
5 6.677 2.035 
6 6.677 0.000 
7 6.677 0.000 

Case no. (2) 
1 5.097 0.714 
2 5.597 2.132 
3 6.597 4.410 
4 7.597 3.680 
5 9.597 9.240 

Case no. (3) 
1 5.221 1.398 
2 6.191 5.187 
3 7.770 8.890 
4 9.770 12.240 

Case no. (4) 
1 5.000 0.000 
2 5.238 1.587 
3 5.738 2.182 
4 6.738 4.560 
5 7.780 6.387 
6 8.786 4.024 

Case no. (5) 
1 5.000 0.000 
2 5.000 0.000 
3 5.066 0.501 
4 5.314 1.614 
5 5.814 2.752 
6 6.314 1.995 
7 6.841 1.771 
8 7.841 4.415 

where ~ = alb is the relative crack length and the functions Y M and Yp , 

for 0';;;; ~.;;;; 0.7, are given by 

(S.3a) 
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TABLE 5.4(a). 
Level of damage according to equation (2.73) in each finite element and at each loading 
increment. Case No.1 in Table 5.l. 

Damage element Incrementj = 1, 2, etc. 
reference number 2 3 4 5 6 7 

12 25 25 25 25 25 
2 19 25 25 
3 4 9 13 
4 
5 15 
6 2 4 15 
7 7 
8 7 
9 10 14 14 25 

10 3 13 13 13 19 25 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 3 5 7 
24 
25 
26 
27 
28 
29 
30 
31 
32 5 11 16 21 
33 6 12 17 22 
34 
35 
36 
37 
38 
39 
40 
41 
42 3 7 8 8 
43 
44 
45 
46 
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TABLE 5.4(a) (CONTINUED) 

Damage element Incrementj = 1, 2, etc. 
reference number 2 3 4 5 6 7 

47 
48 
49 
50 7 19 25 25 
51 
52 

TABLE 5.4(b). 
The same as in Table 5.4(a). Case No.2 in Table 5.1. 

Damage element Increment j = 1, 2, etc. 
reference number 2 3 4 5 

7 25 25 25 25 
2 6 25 25 25 
3 10 25 25 25 
4 7 17 25 
5 2 21 25 
6 11 13 
7 
8 
9 3 12 12 16 

10 17 25 25 25 
11 
12 
13 5 
14 2 24 
15 
16 
17 
18 
19 
20 
21 
22 
23 2 
24 
25 
26 
27 
28 
29 
30 
31 
32 4 10 15 
33 5 12 17 
34 
35 
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TABLE 5.4(b) (CONTINUED) 

Damage element 
reference number 

36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 

TABLE 5.4(c). 

1 
Incrementj = 1, 2, etc. 
234 

2 6 

4 19 

The same as in Table 5.4(a). Case No.3 in Table 5.1. 

Damage element Incrementj = 1,2, etc. 
reference number 1 2 3 4 

1 15 25 25 25 
2 15 25 25 
3 19 25 25 
4 18 25 
5 14 25 
6 6 15 
7 
8 
9 9 15 19 

10 2 22 25 25 
11 
12 
13 5 
14 11 
15 7 
16 
17 
18 
19 
20 
21 
22 
23 
24 

115 

5 

9 

25 



www.manaraa.com

116 

TABLE 5.4(c) (CONTINUED) 

Damage element 
reference number 

Increment j = 1, 2, etc. 

25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 

TABLE 5.4(d). 

2 3 4 

4 7 
5 10 

3 

5 21 
5 

The same as in Table 5.4(a). Case No.4 in Table 5.1. 

Damage element Increment j = 1, 2, etc. 
reference number 1 2 3 4 

1 13 25 25 
2 5 20 
3 8 25 
4 3 
5 
6 
7 
8 
9 6 

10 7 20 25 
11 
12 
13 

5 6 

25 25 
25 25 
25 25 
16 22 
14 25 

4 

6 6 
25 25 
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TABLE 5.4(d) (CONTINUED) 

Damage element 
reference number 

14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
50 

TABLE 5.4(e). 

Incrementj = 1, 2, etc. 
234 5 

2 

2 

The same as in Table 5.4(a). Case No.5 in Table 5.1. 

Damage element Incrementj = 1,2, etc. 
reference number 2 3 4 5 

1 4 14 23 
2 
3 3 
4 
5 
6 
7 
8 
9 

10 7 15 

6 

3 

13 

6 7 

25 25 
9 18 

14 23 

21 25 

Ypm 1.9n1!2 - 0.41~3!2 + 18.70~5/2 - 38.48f/2 + 53.85~9!2 

Equation (5.1) can thus be written as 

K[ = bl~2t [~YMm- ypm] 

117 

8 

25 
21 
25 

7 
4 

25 

(5.3b) 

(5.4) 

From the critical condition K[ = KIC , the dimensionless axial force at incipient 
fracture can be obtained as a function of the crack depth, ~, and the eccen­
tricity e/b: 

(5.5) 
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Fig. 5.3. Load-displacement diagrams for three different load eccentricities and 
Ali = 4 X 10- 3 cm. 
Fig. SA. Ratio of stiffness loss by material damage to total stiffness loss as a function of 
displacement, for three different load eccentricities and Ali = 4 X 10- 3 cm. 

The curves in Figure 5.6 give a graphical representation of equation (5.5) and 
show that for a fixed eccentricity e/b, the fracture process becomes stable 
after initiation. According to Linear Elastic Fracture Mechanics that accounts 
only for unstable crack propagation, fracture will be catastrophic in nature 
once the load P becomes critical. It cannot explain the nonuniform crack 
growth rate phenomenon owing to the effect of compression ahead of the 
crack. For large eccentricities, e/b = 0.35 and 0.40, a softening behavior is 
predicted that is in contrast to the stable solution obtained by Linear Elastic 

30000 

25000 • e/b = 0.30 

® e/b = 0.35 

20000 o e/b = DAD 
Ci 
~ 
0.. 

0 15000 
<{ 
0 
...J 

10000 

5000 

5 6 

CRACK GROWTH, • -.0 (em) 

Fig. 5.5. Load-crack growth diagrams for three different load eccentricities and 
Ali = 4 X 10- 3 cm. 
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Fig. 5.6. Dimensionless load-crack length diagrams and comparison with Linear Elastic 
Fracture Mechanics. 

Fracture Mechanics [4, 5]. On the other hand, it is interesting to observe 
that the crack arrest predicted by Linear Elastic Fracture Mechanics (see 
vertical asymptotes of Figure 5.6), is confirmed by the Strain Energy Density 
Theory for small eccentricities (e/b = 0.30). 

In Figure 5.7, the values of the strain energy density factor, $, are plotted 
against the crack growth, (a -ao). For large eccentricities, e/b = 0.35 and 
0040, they increase when the crack advances, whereas for small eccentricities, 
e/b = 0.30, they increase and then decrease in a quasi-linear manner. This is 
due to the stability effect of compression which tends to close the crack as it 

12 

10 

41 

20~' ,. ·-1 
, crack arrest 

o 1 

I • efb c 0 30 I 
o e'b"'035 
o eib = 0 40 

~.---

CflACK GROWTH a - al> 

Fig. 5.7. Strain energy density factor versus crack growth for three different load eccen­
tricities and 86 == 4 X 10- 3 cm. 
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Fig. 5.8. Load-displacement diagrams for e/b = 0.40 and three different loading in­
crements. 

grows. The slope of the S versus a lines increases with the eccentricity ratio 
e/b. Obviously, sub critical crack growth will be suppressed as e/b is increased. 
For Sc = 8 X 10-3 kg/cm, the critical crack lengths ac = 9.2 and 7.3 cm 
correspond respectively to e/b = 0.35 and 0.40. Unstable crack propagation 
:(ails to occur when e/b is reduced to 0.30 or smaller. 

5.3. Variation in loading step 

In Figure 5.8, the load-displacement curves are given for e/b = 0.40, while 
the displacement increment fj.{j takes the values of 4 x 10-3 , 2 x 10-3 and 
1 x 10-3 cm. The maximum load increases by increasing the displacement 
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Fig. 5.9. Load-crack growth diagrams for three different loading increments and e/b = 
0.40. 
Fig. 5.10. Strain energy density factor versus crack growth for three different loading 
increments and e/b = 0.40. 
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Fig. 5.11. (a) Bilinear plots of strain energy density factor versus crack growth, varying 
the size scale of the slab. Case No.1 in Table 5.1. (b) Straight line plots of strain energy 
density factor versus crack growth, varying the size scale of the slab. Case No.2 in 
Table 5.1. (c) The same as in Figure 5.11(b). Case No.3 in Table 5.1. (d) The same as 
in Figure 5.11(b). Case No.4 in Table 5.1. (e) The same as in Figure 5.11(b). Case No. 
5 in Table 5.1. 

increment. The solution in this case is not sensitive to changes in the load 
step. The variations of P with (a -ao) are shown in Figure 5.9. These curves 
are affected by the loading step, even during the stable stage of increasing 
load. The SR-curves for three different displacement steps tJ.li are given in 
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Fig. 5.12. (a) Dimensionless load-displaeement diagrams, varying the size scale of the 
slab. Case No.1 in Table 5.1. (b) The same as in Figure 5.12(a). Case No.2 in Table 
5.1. (e) The same as in Figure 5.12(a). Case No.3 in Table 5.1. (d) The same as in 
Figure 5.12(a). Case No.4 in Table 5.1. (e) The same as in Figure 5.12(a). Case No.5 
in Table 5.1. 
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Figure 5.10. These curves rotate slightly in the counterclockwise direction 
as t:.8 is increased. For a constant Sc, the effect of increasing t:.8 tends 
to reduce slow crack growth or to enhance brittle fracture. 

5.4. Scaling in size 

Figure 5.11(a) shows the bilinear S versus a variations with the size b. Crack 
instability occurs only for b ;> 53 cm. This is based on a critical value of 
Sc = 8 X 10-3 kg/cm. Figures 5.11(b), (c), (d) and (e), on the other hand, 
show a linear S versus a relationship and the curves shift upwards by increasing 
the structural size b. The limiting size beyond which the stable crack growth 
does not occur decreases when the loading eccentricity and/or the loading 
step increase. Figures 5.12(a) to (e) inclusive represent the relations between 
P/(dW/dV)cb2 and 8/b. The vertical lines with arrows indicate the limiting 
values of 8/b as the critical strain energy density factor, Sc = 8 X 10-3 kg/cm, 
is reached. The maximum load P;;~ can be obtained from the Linear Elastic 
Fracture Mechanics solution in equation (5.5). The load Pg~x, obtained from 
the linear elastic limit analysis at the ligament is 

(5.6) 

where A = e - (b/6), Figure 5.13. 
Tables 5.5(a) to (e) inclusive report the maximum loads obtained through 

the different assumptions and for various sizes, while Figures 5.14(a) to (e) 
inclusive give a graphical pisplay of results obtained from the different 
theories. The strain energy density theory again predicts the entire range of 
failure modes from brittle fracture to plastic collapse. 
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TABLE 5.5. 
(a) Maximum load for different size scales and according to the various theories: Strain 
Energy Density Theory, Linear Elastic Fracture Mechanics, Limit Analysis. Case No.1 
in Table 5.1. (b) The same as in Table 5.5(a). Case No.2 in Table 5.1. (c) The same as 
in Table 5.5(a). Case No.3 in Table 5.1. (d) The same as in Table 5.5(a). Case No.4 in 
Table 5.1. (e) The same as in Table 5.5(a). Case No.5 in Table 5.1. 

Case no. (1) 

Size b, em 53 120 240 

p(lk (SEDT), kg 150000 566000 1740000 
/f,.) (LEFM), kg 180700 616000 1 740000 
PMfx (Limit analysis), kg 350000 1800000 7206000 

P~axIPWx ratio 0.83 0.92 1.00 
P 3) IP 2) ratio 1.94 2.92 4.14 ax max 

Case no. (2) 

Size b, em 15 30 60 120 

p*k (SEDT), kg 13284 48000 112000 285000 
P 2) (LEFM), kg 12580 35600 100600 285000 
p*fx (Limit analysis), kg 7717 30870 123480 494000 
PiaxlPM~x ratio 1.06 1.35 1.11 1.00 
P 3) IP(2) ratio 0.61 0.87 1.23 1.73 max max 

Case no. (3) 

Size b, em 15 30 60 68 

p(lk (SEDT), kg 7000 21000 65270 80400 
pMk (LEFM), kg 8180 23500 66600 80400 
p#k (Limit analysis), kg 4376 17500 70000 90000 
p.ri~xlpMk ratio 0.85 0.89 0.98 1.00 
p!ri~xlpM~x ratio 0.53 0.74 1.05 1.12 

Case no. (4) 

Size b, cm 15 30 60 105 

Pgr (SEDT), kg 7525 22000 64000 151500 
PAiax (LEFM), kg 8180 23500 66600 151500 
P!ri~x (Limit analysis), kg 4376 17500 70000 219000 
pgklPMr ratio 0.92 0.94 0.96 1.00 
p(3) /p(2 ratio 0.53 0.74 1.05 1.44 max max 

Case no. (5) 

Size b, cm 15 60 120 240 

p(l) (SEDT), kg 5500 64000 181000 523500 
p'(',f' (LEFM), kg 8180 66600 185000 523500 
p*fx (Limit analysis), kg 4376 70000 • 286000 1145000 

P r,ax/PAirx ratio 0.67 0.96 0.98 1.00 
P ,) /pM ratio 0.53 1.05 1.55 2.19 max ax 
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Fig. 5.14. (a) Maximum load predicted by Strain Energy Density Theory and by Limit 
Analysis referred to the critical load from LEFM. Case No.1 in Table 5.1. (b) The same 
as in Figure 5.14(a). Case No.2 in Table 5.1. (c) The same as in Figure 5.14(a). Case No. 
3 in Table 5.1. (d) The same as in Figure 5.14(a). Case No.4 in Table 5.1. (e) The same 
as in Figure 5 .14(a). Case No.5 in Table 5.1. 
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Steel reinforced beam with crack in bending 

6.1. Traditional approach 

Linear elastic analysis. Reinforced concrete is a composite material ()f 

mortar, aggregates and steel bars. Concrete presents a relatively high com­
pressive strength, whereas its tensile strength is low. This is why steel bars 
are embedded in order to carry the tensile load. Concrete and steel adhere 
well. They possess the same coefficient of thermal expansion, ao:>< 1.2 X 

1O-50e l such that they can expand together without exerting differential 
displacements. 

The basic assumptions for the statics of reinforced concrete are [1] : 

(1) Concrete behaves as a linear elastic material with compressive loads and 
as a non traction-bearing material with tensile loads. 

(2) Steel behaves as a linear elastic material with both compressive and 
tensile loads. 

(3) The steel bars cannot slip inside concrete; therefore, the expansions of 
both materials are the same. 

(4) The cross-sections remain plane. 

In beam bending, the neutral axis divides the cross-section into two parts: 
one part is in tension and the other in compression, Figure 6.1. The steel 
bars are therefore installed below the neutral axis such that the concrete 
is compressed while the steel is stretched. The condition of axial equilibrium 
for the rectangular cross-section in Figure 6.1 is 

(6.1) 

where as is the stress in steel, ac is the maximum compressive stress in the 
upper extremity of the concrete beam, As is the steel area, t is the thickness 
of the beam and x is the unknown distance of the neutral axis from the 
upper extremity of the beam. Moment equilibrium yields 

127 
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Fig. 6.1. Reinforced concrete beam cross-section. 
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(6.2) 

where M is the bending moment applied to the cross-section and (b - h -
(xI3)) the moment arm. The beam depth is band h is the distance of the 
steel bars measured from the lower extremity of the beam. The proportionality 
condition in strain gives 

b-h-x 
x 

(6.3) 

where €s is the dilatation of the steel bars and €c the strain of concrete in 
the upper extremity of the cross-section, Figure 6.1. If the stresses are intro­
duced in equation (6.3), the result is 

b-h-x 
x 

(6.4) 

where n is the ratio of elastic modulus of steel, Es , to elastic modulus of 
concrete, Ec(n ~ 10). Combining equations (6.1) and (6.4), it follows that 

(6.5)" 

from which 

hx2 -nAsCb -h -x) = 0 (6.6) 

The root x of the quadratic equation (6.6) gives the position of the neutral 
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axis which guarantees the balance of moment. The steel area As must be 
considered n times larger. From equations (6.1) and (6.2), it is then possible 
to obtain the stresses in concrete and steel as functions of the distance x: 

2M 
(6.7a) 

M 
(6.7b) 

Alternatively, the unknowns x, b, As may be solved. Equation (6.4) may be 
transformed into 

noc 
x = (b -h) 

Os + noc 
(6.8) 

Hence, equations (6.1) and (6.8) may be used to give 

(6.9) 

By means of equations (6.8) and (6.9), equation (6.2) becomes 

(6.10) 

with b as an unknown. The quantities Q and ~ are 

(6.11a) 

(6.11b) 

Once the beam depth b has been obtained, equations (6.8) and (6.9) give the 
neutral axis position and the steel area As. 

Limit design. According to the linear elastic analysis, the stress in steel 
Us and in concrete Uc are a fraction of the yield strength. For a reinforced 
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concrete beam, the linear elastic analysis can drastically underestimate 
carrying capacity and ductility. 

The stress-strain relationship suggested by the international regulations 
[2] for concrete in compression is shown in Figure 6.2. The a versus e curve 
is parabolic up to the attainment of the yield strength ao with strain eo = 
2 x 10-3 following the line OA, i.e., 

(6.12) 

A perfectly plastic behavior then follows up to the ultimate strain, eu = 
3.5 x 10-3 , when crushing occurs. 

Consider the rectangular cross-section in Figure 6.3. Let it be loaded by 
a bending moment,M, and suppose that the section remains plane, so that the 
strain diagram is linear, Figure 6.3(a). The stress diagram in Figure 6.3(b) is 
not linear and is related to equation (6.12). The resultant compressive force, 
Fe, may be determined by means of an integration: 

(6.13) 

The distance of the stress resultant from the upper extremity of the beam, 
d, can be found from 

Fed = s: a(e(y))tydy 

which leads to 

o 

A 
0 0 

I 
I 
I 
I 
I 
I 
I EO 

2 

B 

E 
u 

3 4 E(/oo) 

(6.14) 

Fig. 6.2. Stress-strain relationship suggested by the international regulations for concrete 
in compression. 
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Fig. 6.3. Reinforced concrete beam cross-section: stress and strain distributions for limit 
design. 

(6.15) 

Instead of the diagram a versus € in Figure 6.2, a simpler bilinear relation­
ship OAB can be used: 

€o 
k = 1--

s 2€c 
(6.16) 

When the strain in the upper extremity of the beam, €c' reaches the ultimate 
value, €u = 3.5 X 10-3 , equation (6.16) gives ks = 0.714. 

The condition of axial equilibrium for the rectangular cross-section in 
Figure 6.3 is 

(6.17) 

while moment equilibrium renders 

(6.18) 

The distance of the neutral axis from the upper extremity of the beam x can 
be related to the beam depth b by means of equation (6.3). More explicitly 
equations (6.17) and (6.18) can be written as 

(6.19) 

and 
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(6.20) 

The limit moment M can be obtained from equations (6.19) and (6.20) 
by assuming that collapse occurs when the steel begins to yield. Once the 
values Us and f. are fixed, equation (6.19) gives f e • If fc is lower than 
3.5 x 10-3 , the limit moment can then be found from equation (6.20). Other­
wise, the upper limit will be fixed at €e = 3.5 X 10-3 from which €s is obtain­
ed by using eqation (6.19). Similarly M, €e and €. can be given and b and As 
can be solved by assuming that the concrete fractures at the same time when 
the steel reaches its yield limit. 

6.2. Linear elastic fracture mechanics 

Preliminary remarks. In the traditional analysis of a reinforced concrete 
beam, the tension part of concrete is assumed not to support traction while 
the compression part is assumed to behave elastically or elastic-plastically. 
Such an analysis does not take into account the stiffness variation and the 
stress concentration due to the presence of cracks. Traditionally, the influence 
of cracks in masonry or concrete is treated by empirical means. Such an 
approach has no predictive capability_ 

In this section, five different collapse conditions are considered: 

(1) crack propagation in concrete; 
(2) tensile strength collapse in concrete; 
(3) crushing collapse in concrete; 
(4) yielding of steel; 
(5) slippage of steel bars. 

The collapse conditions depend on the mechanical and geometrical properties 
of the beam. The process of concrete fracture and steel plastic flow will 
depend on a number of parameters [3-5] such as percentage of steel, 
As/A, yield strength of steel, fy, fracture toughness of concrete, K[c and 
beam depth, b. 

Reaction of reinforcement. Consider a reinforced concrete beam element 
with a rectangular cross-section of thickness t and depth b, subjected to a 
bending moment, M. The steel reinforcement is at a distance h from the 
external surface. A through-thickness edge crack of depth a ~ h is assumed 
to exist in the stretched position shown in Figure 6.4. The cracked concrete 
beam element is subjected to the bending mOIl}ent,M, and the eccentric axial 
force, F. It is well-known that a bending moment, M*, induces a stress­
intensity factor at the crack tip equal to [6,7] : 
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Fig. 6.4. Cracked reinforced beam element. 

(6.21) 

where ~ = alb is the relative crack depth and Y M is the function: 

yMm = 6 x (1.99~1!2 -2.47~3!2 + 12.9ns/2 -23.17f!2 + 24.80~9/2) 

(6.22) 

for ~;:;;; 0.7. In the same way, an axial force F*, can be associated with the 
stress intensity factor [6,7] : 

(6.23) 

in which 

(6.24) 

for ~;:;;; 0.7. The bending moment M* produces a local rotation <p equal to 
[6,7] 

in which 

2 f~ AMM = -2- Y1md~ 
b tE 0 

The axial tensile force F* yields the rotation [6, 7] 

<P = AMFF* 

in which 

(6.25) 

(6.26) 

(6.27) 
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Fig. 6.5. Local rotation in uncracked (a) and cracked (b) beam cross-section. 

(6.28) 

The uncracked section acts as a perfectly fixed joint, Figure 6.5(a), while the 
cracked section is an elastic joint rotating under the action of the bending 
moment M* and the axial force F* shown in Figure 6.S(b), Le. 

(6.29) 

For the statically undeterminate system in Figure 6.4, the total moment is 

(6.30) 

while the axial force is 

F* =-F (6.31) 

Until the steel begins to yield or slip, the global rotation due to the bending 
moment M* and to the closing force F* is equal to zero: 

(6.32) 

Equation (6.32) is the condition that determines F. Inserting equations (6.30) 
and (6.31) into equation (6.32), the result is 

(6.33) 

Finally, it is possible to show that 
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Fb 1 

M 
(±-~)+ r(~) 

(6.34) 

where 

r(~) 
fJYMmYFmd~ 

fJY1(~)d~ 
(6.35) 

The statically undetermined reaction of the reinforcement, against the 
relative crack depth for h/b = 1/10, 1/20 is shown in Figure 6.6. The decrease 
of the reaction by increasing the crack depth can be explained by observing 
that both the compliances AMM and AMF increase with an increasing crack 
length with AMF increasing more rapidly than AMM' 

Reinforcement plastic flow or slippage. Equation (6.34) shows that the force 
F transmitted by the reinforcement increases linearly with the bending 
moment M up to the limit Fp = fyAs. Before the steel yields, cracks grow in 
concrete as slippage is allowed between concrete and steel. The effect of 
slippage can also be included by defining a fictitious yield strength ly for 
steel that is smaller than the true value fy. 

A perfectly plastic behavior of the reinforcement will be considered, 
Figure 6.7. From equation (6.34), it is possible to obtain the moment of 
plastic flow for the reinforcement: 

Fb 

M 

20 

16 

12 

h 1 

~ ~ 
b 20 

h 1 

08 b 20 

Mp ------~:s::::;;.====::::::::::::::::::=:::h 1 
Fpb -.::-: -- ----------

04 
- _______ ~ ___ ~o 

OO~~~~~~--~~~~~--o 0 0 1 0 2 0.3 04 0 5 0 6 

RELATIVE CRACK LENGTH , ~ '=a/b 

Fig. 6.6. Reaction of reinforcement and bending moment of reinforcement plastic flow, 
due to yielding of steel or to slippage of bar. 
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Fig. 6.7. Force transmitted by reinforcement against applied moment. 

(6.36) 

The plot of moment against the relative crack depth for hlb = 1/10, 1/20, 
is given in Figure 6.6. The moment of reinforcement plastic flow Mp is seen 
to increase with the crack depth ~. If the concrete has a low crushing strength, 
fe, and steel has a relatively high yield strength, f y , then the concrete crushes 
before the steel yields. If Me is the moment required to crush the concrete 
it follows then 

(1 -~) (2 + ~ - 3 !:) 
= felfy b 

AsiA 6 
(6.37) 

where Fp and Me are defined in Figures 6.7 and 6.8. The dashed line in 
Figure 6.6 represents the solution of equation (6.37) for fe = 200 kg/cm2 , 

fy = 3600 kg/cm2 , AsiA = 0.024 and h/b = 0.1. The collapse of concrete 
comes before the steel can yield. This occurs for sufficiently high values of 
crack depth (~ ~ 0.175). 

) 
Fig. 6.8. Assumption of linear stress variation through the ligament. 
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Rigid-hardening behavior. The mechanical behavior of the cracked re­
inforced concrete beam is rigid until M ~Mp for r.p = O. When M > Mp, r.p 
is given by 

(6.38) 

The M versus I{) diagram in Figure 6.9 describes the rigid-linear hardening 
behavior given by equation (6.38). The hardening line is parallel to the M 
versus r.p diagram related to the same cracked beam without reinforcement 
shown by the broken line. The hardening coefficient "AilM versus the relative 
crack depth ~ is also plotted in Figure 6.9. By increasing the crack depth, 
~, the hardening line becomes more and more inclined until a perfectly 
plastic behavior is reached. As ~ tends to zero, the hardening line becomes 
nearly vertical before it behaves as for a rigid body. SomeM versus r.p diagrams 
for h/b = 1/20 are also shown in Figure 6.10 with ~ varying between 0.05 
and 0.50. The moment of steel plastic flow increases very little by increasing 
~ while the slope of the hardening line decreases sharply. 

Stability of concrete fracture and steel yielding. Mter the steel flows 
plastically, the stress-intensity factor acting at the crack tip is equal to the 
sum of equations (6.21) and (6.23) with 

M* = M-Fp(%-h) 

and 
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Fig. 6.9. Hardening coefficient against relative crack depth. 

(6.39) 
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Fig. 6.10. Moment versus rotation diagrams for different crack depths. 

F* = -Fp 

It follows that 

(6.40) 

(6.41) 

When K I in equation (6.41) is set equal to the concrete fracture toughness 
KIC , the momentMF at incipient fracture becomes 

(6.42) 

The fracture moment of concrete MF is plotted against the relative crack 
depth ~ in Figure 6.11. The non-dimensional number N p is 

(6.43) 

For hlb = 1/20 and Np close to zero, MF decreases as the crack extends and a 
typical phenomenon of unstable fracture occurs. For higher N p values, a 
stable branch follows the unstable one of the curve. Even for N p = 1, the 
minimum of the curve is evident and takes place for ~ "'" 0.35. For higher 
Np values, the crack depth ~ for which the minimum occurs is lower, while 
the stable branch becomes steeper and steeper. For N p :::: 8.5, the unstable 
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Fig, 6.1 L Bending moment of crack propagation versus relative crack depth (h/b = 1/20), 

branch disappears and only the stable branch remains. A similar behavior has 
been discussed in section 5.2 for a cracked masonry wall subjected to an 
eccentric axial compression. The locus of the minima is represented by a 
dashed line in Figure 6.11. This line divides the diagram into an upper zone 
where the fracture is stable, and a lower one where the process is unstable. 
Fracture in reinforced concrete is therefore stable when the beam is sufficiently 
reinforced with sufficiently small cross-section, or when the crack is suffici­
ently deep. 

For h/b = 1/10, the curves are similar to those in Figure 6.11. The only 
differences are 

(1) the curves shift downwards, i.e., crack propagation occurs for lower 
moments, and 
(2) the dashed line shifts upwards, i.e., the stable zone of the diagram 
shrinks. 

For a reinforced concrete beam withfy = 2400 kg/cm 2 ,KIC = 80 kg/cm3/ 2 , 

b = 30 cm and AsiA = 0.010, the non-dimensional number in equation (6.43) 
is N p = 1.64. Figure 6.11 therefore shows that the fracture is at the meta­
stable state. 

From equations (6.36) and (6.42), a relation between MF and Mp can be 
established: 
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Fig. 6.12. Ratio between moment of steel plastic flow and moment of crack propagation 
in concrete (h/b = 1/20). 

(6.44) 

In Figure 6.12, the ratio Mp/MF against the non-dimensional number Np is 
given for different crack depths ~ and h/b = 1/20.·This diagram shows that 
when high N p corresponds to deep cracks, the events of crack propagation 
and plastic flow in steel are then close to one another. 

In Figure 6.l3 M versus <{J diagrams are shown, for h/b = 1/20, ~ = 0.1, 
and Np = 0.0,0.1,0.3,0.7 and 3.0. This corresponds to five different steel 
areas. 

The rigid behavior (0";;; M";;; Mp) is followed by the linear hardening 
behavior (Mp < M";;; MF)' The latter stops when crack propagation occurs. 
If the fracture process is unstable, M(I{)) contains a discontinuity and drops 
from value MF to value Fpb with a negative jump, Figures 6.13(a), (b) and 
(c). A complete and instaneous separation of the concrete cross-section oc­
curs. While the rotation <{J is constant, the new moment Fpb can be estimated 
according to the scheme in Figure 6.l4, where each beam segment is subjected 
to the traction Fp of the reinforcement and to the contact compression Fp , 
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Fig. 6.13. Mechanical behavior of reinforced concrete beams for different nondimensional 
numbersNp (h/b = 1/20; ~ = 0.10). 

Fig. 6.14. Statical scheme after concrete separation. 
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i.e., to the moment Fp(b -h) ~Fpb. An increase in I.{) without considering 
any other phenomenon of instability results in a decrease in the bending 
moment as shown in Figure 6.14: 

I.{) 
M = Fpb cos 2" (6.45) 

If the fracture phenomenon is stable, M(I.{)) does not contain any discontinuity 
and describes a hardening behavior, Figure 6.13(e). The envelope is shown in 
Figure 6.10. 

In Figure 6.13(a), the case N p = 0 is considered, i.e., a beam without 
reinforcement. The plastic flow moment Mp is naturally equal to zero as well 
as the moment Fpb which occurs immediately after the complete separation 
of concrete. The case Np = 0.1 is described in Figure 6.13(b), i.e., a beam 
reinforced weakly. The ratio Mp/Fpb can be determined from Figure 6.6 
and Mp/MF from Figure 6.12. The slope of the hardening line depends only 
on the crack length, besides the elastic modulus of concrete and the cross­
section sizes, Figure 6.9. The case Np = 0.3 is considered in Figure 6.13(c) 
with a higher ratio of Mp/MF. The ratio Mp/Fpb, is independent of N p, 
Figure 6.6, and remains unchanged. In Figure 6.13(d), the case N p = 0.7 
is reported. For this value,MF = Fpb, and the discontinuity vanishes. Finally, 
Figure 6.13(e) treats the case Np = 3. The fracture moment MF is only 
slightly higher than the plastic moment Mp and the moment F pb is obtainable 
only with a positive jump of the function. Figure 6.11 shows that the fracture 
process for Np = 3 and ~ ;;;. 0.14 is stable. Therefore, the concrete does not 
separate instantaneously. 

Note that for Np ":;;; 0.7 it is Fpb ":;;;MF and a discontinuity appears in the 
diagram M(I.{)), Figures 6.13(a) to (d). On the other hand, for Np ":;;; 0.7, the 
curves in Figure 6.11 lie completely in the unstable zone. 

6.3. Non-linear model with material damage and softening 

Effect of reinforcement on load transfer. The three-point bent beam in 
chapter 3 will be reinforced with a steel bar on the tension side, Figure 6.15. 
The finite element mesh used for the left side of the structure is shown in 
Figure 6.16. The damage-crack growth model of Sih and Matic [8,9] is again 
applied to derive the SR-curves with particular emphasis placed on the 
influence of reinforcement. The horizontal displacement of the point of 
reinforcement reaction F is assumed to be zero until F reaches the plastic 
limit, Fp = fyAs. Then, the constant force Fp is transmitted to the cracked 
beam. 

The cases analyzed are summarized in Table 6.1. Material 3 in Figure 2.29 
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Fig. 6.16. Finite element idealization of the steel reinforced beam with crack in Figure 
6.15. The zoom area is the same as in Figure 4.2(b). 

and three different yield forces are used. The load-deflection values and the 
crack growth increments are reported in Table 6.2. The crack lengths and 
strain energy density factors can be found in Table 6.3 while the reinforce­
ment reactions and the related plastic crack openings are given in Table 6.4. 
The damage level within the finite elements is described in Tables 6.5(a) to 
(c) as defined by equation (2.73) for increasing loads. Note that element 11 

TABLE 6.1. 
The three cases analyzed in this chapter, changing the yield force F p. 

Case no. 

I (1) 
II (2) 

III (3) 

Yield force, Fp (kg) 

1296 
648 
324 

Symbol 

• 
@ 

o 
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TABLE 6.2. 
Load, deflection and crack growth increment at each loading increment and for each 
case in Table 6.1. 

Case no. (1) 
Increment Load Deflection Crack growth increment 
j = 1,2, etc. Pj (kg) OJ (10-' em) flaj (em) 

1 608 3 0.060 
2 1116 6 0.383 
3 1062 9 1.332 
4 528 12 2.253 

Case no. (2) 
1 608 3 0.060 
2 1113 6 0.383 
3 1206 9 1.104 
4 889 12 2.l62 

Case no. (3) 
1 591 3 0.060 
2 892 6 0.551 
3 814 9 1.438 
4 532 12 2.127 

TABLE 6.3. 
Crack length and strain energy density factor at each loading increment and for each case 
in Table 6.1. 

Case no. (1) 
Increment Crack length Strain energy density factor 
j = 1, 2, etc. aj (cm) Sj (kg/em X 10-') 

1 5.060 0.466 
2 5.443 1.900 
3 6.775 10.283 
4 9.028 17.100 

Case no. (2) 
1 5.060 0.466 
2 5.443 1.900 
3 6.547 8.026 
4 8.709 16.258 

Case no. (3) 
1 5.060 0.466 
2 5.611 3.890 
3 7.049 8.469 
4 9.176 13.464 
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TABLE 6.4. 
Reaction of the reinforcement and plastic crack opening at each loading increment and 
for each case in Table 6.1. 

Case no. (1) 
Increment Reinforcement reaction Plastic crack opening 
j=1,2,etc. Fj (kg) Wj (10- 3 cm) 

1 365 < Fp (1296) 0 
2 656 < Fp 0 
3 465 < Fp 0 
4 260 < Fp 0 

Case no. (2) 
1 365 < Fp (648) 0 
2 648 =Fp 0.038 
3 648 =Fp 2.153 
4 648 =Fp 6.202 

Case no. (3) 
1 324 =Fp 0.141 
2 324 =Fp 1.908 
3 324 =Fp 4.867 
4 324 =Fp 8.830 

experiences a severe damage as the reinforcement transmits the force F to the 
beam. This is particularly noticeable for Cases (1) and (2) where the beam is 
more reinforced. 

The load-deflection responses for the deflection increment /lo = 3 x 10-3 

cm are presented in Figure 6.17. At first, the P versus 0 curve rises as the 
steel area increases. It then drops when the steel area is so large that element 
11 begins to experience considerable damage, Figure 6.16. 

In Figure 6.18, the ratio of stiffness loss by material damage to total 
stiffness loss is given as a function of the imposed deflection, o. The general 
trend is that this ratio tends to zero for very small as well as for very large 
deflections. For intermediate deflections, these curves yield a maximum that 
increases with increasing plastic force, Fp, which is equivalent to increasing 
the steel area. In Figure 6.19, the load P is plotted against the crack growth 
(a - ao). The load first increases as the crack grows. Structural instability 
then begins. The values of the strain energy density factor, S, are plotted 
against the crack growth (a - ao) in Figure 6.20. They increase when the 
crack grows and the variation is steeper for larger steel areas. This implies 
that for a given value of Sc sub critical crack growth reduces as the reinforce­
ment is increased, and crack instability occurs earlier. 

Scaling in size. Figures 6.21 give the S versus a plots as the beam depth, 
b is varied. As for the non-reinforced beams, the critical crack growth decreases 
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TABLE 6.5(a). 
Level of damage according to equation (2.73) in each finite element and at each loading 
increment. Case No.1 in Table 6.1. 

Damage element 
reference number 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

TABLE 6.5(b). 

Incrementj = 1,2, etc. 
2 3 

20 
4 

5 
9 

25 
15 
21 

2 
4 

21 
22 

The same as in Table 6.5(a). Case No.2 in Table 6.1. 

Damage element Increment j = 1, 2, etc. 
reference number 2 3 

20 25 
2 4 19 
3 24 
4 8 
5 8 
6 
7 
8 
9 5 

10 5 24 
11 9 12 
12 
13 
14 
15 

TABLE 6.5(c). 
The same as in Table 6.5(a). Case No.3 in Table 6.1. 

Damage element Incrementj = 1, 2, etc. 
reference number 2 3 

1 25 25 
2 12 25 
3 10 25 

4 

25 
22 
25 
25 
15 

25 
25 

4 

3 
4 

25 
25 
25 
24 
18 

5 
25 
12 

3 
5 

4 

25 
2S 
25 
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TABLE 6.5(c) (CONTINUED) 

Damage element 
reference number 

4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

1400 

1200 

1000 

- 800 

o 

" o 600 

no crack / 
I 

I 

DEFLECTION fJ (10 3 emJ 

Increment i = 1, 2, etc. 
2 3 

3 
14 

il 
jl 
" ~ 
~ 
~ 
S 

~. 
tni 

100 

80 

60 

40 

20 I 

17 
11 

3 
25 

O~ 
0 3 

4 

25 
16 

3 
25 

15 

~---. 

12 

DEFLECTION 6 (10 } em) 

Fig. 6.17. Load-deflection diagrams for three different yield forces. 
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Fig. 6.18. Ratio of stiffness loss by material damage to total stiffness loss as a function 
of deflection, for three different yield forces. 
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Fig. 6.19. Load-crack growth diagrams for three different yield forces. 
Fig. 6.20. Strain energy density factor versus crack growth for three different yield forces. 
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Fig. 6.21. (a) Straight line plots of strain energy 
density factor versus crack growth, varying the 
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The same as in Figure 6.21(a). Case No.2 in 
Table 6.1. (c) The same as in Figure 6.21(a). 
Case No.3 in Table 6.1. 
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Fig. 6.22. (a) Dimensionless load-deflection 
diagrams, varying the beam size scale. Case No. 
1 in Table 6.1. (b) The same as in Figure 
6.22(a). Case No.2 in Table 6.1. (c) The same 
as in Figure 6.22(a). Case No.3 in Table 6.1. 
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TABLE 6.6. 
(a) Maximum load for different size scales and according to the various theories: Strain 
Energy Density Theory, Linear Elastic Fracture Mechanics, Limit Analysis. Case No.1 
in Table 6.1. (b) The same as in Table 6.6(a). Case No. (2) in Table 6.1. (c) The same 
as in Table 6.6(a). Case No. (3) in Table 6.1. 

Case no. (1) 

Size b, em 15 30 60 120 

p(l) x (SEDT), kg 1116 4464 13 200 38400 
/{';~ x (LEFM), kg 2155 7250 25125 89535 
p~!x (Limit analysis), kg 1543 6174 24696 98784 
p~~x/pMtx ratio 0.52 0.62 0.53 0.43 
p(3) /p(2 ratio 0.72 0.85 0.98 1.10 max max 

Case no. (2) 

Size b, em 15 30 60 120 

Pf,tx (SEDT), kg 1206 4460 15040 38400 
p 2 x (LEFM), kg 1662 5278 17240 57995 
P*h (Limit analysis), kg 1037 4149 16600 66384 
P I) X/p (2) ratio 0.73 0.84 0.87 0.66 
/{';~ //(,~ ratio 0.62 0.79 0.96 1.14 max max 

Case no. (3) 

Size b, em 15 30 60 120 

~~~x (SEDT), kg 892 3568 11360 36800 
P 2 x (LEFM), kg 1415 4290 13280 42160 
P*~ (Limit analysis), kg 785 3141 12564 50256 
P 1 /p(2) f 0.63 0.83 0.86 0.87 'lW ~~xra 10 
p max/P max ratIo 0.55 0.73 0.95 1.19 

with increasing specimen size. The limiting size is approximately b = 120 em, 
and this result is independent of the steel percentage, Fp/b 2 • 

In Figures 6.22, the relations between the dimensionless load and dimension­
less deflection are shown. The vertical lines with arrows indicate that the 
limiting value of b/b corresponds to S reaching the critical value Sc = 8 X 

lO-3 kg/em. 

M M 2 

( ) 
M - 3 b Fp 

Fp 
b u= 

2 I 2 
a T b t (3 b) 6 - bt 

a =- 3 
o 3 

Fp Fp 

Fig. 6.23. Linear clastic limit analysis at the ligament. 
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Fig. 6.24. (a) Maximum load predicted by 
Strain Energy Density Theory and by Limit 
Analysis referred to the critical load from 
LEFM. Case No.1 in Table 6.1. (b) The same 
as in Figure 6.24(a). Case No.2 in Table 6.1. 
(c) The same as in Figure 6.24(a). Case No.3 
in Table 6.1. 

Summarized in Table 6.6 are the maximum loads P~~x, obtained by the 
non-linear damage model, p~!x, given by the Linear Elastic Fracture Mech­
anics approach in section 6.2. [see equation (6.42)] , and pg1c , obtained 
through a linear elastic limit analysis at the ligament (Figure 6.23). Unlike 
the results corresponding to no steel reinforcement, Figures 6.24(a) to (c) 
inclusive show that the reinforced beam does not fail by brittle fracture. The 
strain energy density curve never reaches the Linear Elastic Fracture Mech­
anics limit of KIC that corresponds to catastrophic failure, even when the 
beam size is increased. For small size beams, the Strain Energy Density 
Theory prediction isvery close to that of limit analysis. On the other hand, the 
maximum load, for b ""* "", is a constant fraction of the Linear Elastic Fracture 
Mechanics solution [3, 4]. Such a fraction increases for decreasing steel 
percentages, Fp(b 2 , and tends to unity when Fp(b 2 tends to zero, Figure 
6.24(c). 
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Panel with opening and diagonal cracks 

7.1. Infilled frames and seismic loadings 

The presence of panels in framed structures enhances stiffness, strength and 
ductility. Stiffened frames also give rise to higher natural frequencies with 
corresponding changes in mode shapes. Stafford Smith [1, 2] analyzed the 
lateral stiffening of infilled frames. In reality, this problem can be very 
difficult because of the partial debonding between frame and panel as a result 
of monolateral constraint. More schematically, the presence of a panel in a 
frame may be simulated by a diagonal strut, Figure 7.1. The stiffness of this 
fictitious strut depends on the geometric and mechanical features of the panel 
in relation to those of the frame. Simplified models may be developed by 
resorting to the theory of beams on elastic foundation. 

The global stiffness of the frame-panel system in Figure 7.I(a) depends 
on the extension and distribution 9f the contact forces. When the frame stiff­
ness increases, the contact zone extends and then the effective panel stiffness 
increases accordingly. This is why a large increase in global lateral stiffness 
can be achieved with a relatively small increase in frame stiffness. 

Stafford Smith [2] defined the relative panel-frame stiffness as 

H -
(a) 

Fig. 7.1. Infilled frame (a) and simulation of the panel by a diagonal strut (b). 

153 
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Xh (7.1) 

where Ep, hand t are the elastic modulus, height and thickness of the panel 
respectively. The flexural rigidity of the pilasters is EI. The extension, IX, of 
the contact zone in Figure 7.1 (a), is given approximately by 

h 

11" 1 

2 Xh 

which when combined with equation (7.1) yields 

h 2 

(7.2) 

(7.3) 

The relative width of the fictitious strut, wid, is plotted as a function of 
the parameter Xh in Figure 7.2 obtained by a numerical calculation performed 
in [3]. Stafford Smith suggests that a conservative estimate of the lateral 
displacements of an infilled frame can be carried out considering the global 
structure as a network, where the panels are replaced by diagonal struts 
with relative width wid = 0.1, Figure 7.3. When a panel contains one or more 
openings, it is even more difficult to evaluate its stiffness and failure mech­
anisms. In the next sections, a numerical analysis will be made on square 
panels with a square opening in the middle. Seismic loadings will be simulated 
statically by two diagonal compressive forces. Crack propagation from the 

"" ,< 
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Fig. 7.2. Relative width of the fictitious strut as a function of the parameter l>.h defined 
in equation (7.1). 



www.manaraa.com

155 
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h 

(a) (b) 

Fig. 7.3. Multistoreys infilled frame (a) and simulation by a network where the panels 
are replaced by diagonal struts (b). 

)It, (a) 

nt (b) 

a (c) 

Fig. 7.4. Different panel opening sizes considered in the present analysis. 

corners of the openings in Figures 7.4(a) to (c) will be analyzed step-by-step 
by application of the non-linear Strain Energy Density Theory [4, 5]. 

7.2. Variation in opening size 

Three different panel opening sizes are considered, Figures 7.4(a) to (c). 
Because of symmetry, only one fourth of the panel needs to be analyzed. 
The finite element grid patterns that discretize the panels are shown in Figures 
7.5(a) to (c). Three different ratios are assumed, bid = 1/2, 2/3 and 3/4 
where d is the panel half-diagonal and b is the difference between the half­
diagonals of panel and opening. The initial crack length ao is assumed to be b/ 
4 while the thickness of the panel is t = 30 cm. The sizes will be geometrically 
scaled to study their influence on the mechanics of fracture. A more refined 
grid pattern around the crack tip is shown in Figure 7.6. Refer to Table 7.1 
that summarizes the cases to be investigated. The three geometrical ratios, 
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in Figure 7.4(c). 
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Fig. 7.6. Finite element mesh in the crack tip vicinity. 
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TABLE 7.l. 
The five cases analyzed in this chapter, changing geometrical ratios and loading in­
crements. 

Case no. Geometrical ratio b /d Displacement increment Symbol 
1J..o (10- 2 cm) 

1(1) 1/2 • 
II (2) 2/3 (i) 

III (3) 3/4 1 0 

IV (4) 3/4 2 0 

V (5) 3/4 4 "-

bid, in Figure 7.4 and three different loading increments are considered. The 
input parameter is the diagonal displacement of the load application point 
8, Figure 7.7. The meshes and the deformed configurations related to Case 
(1) are illustrated in Figures 7.7 (a) and (b). The load-displacement values and 
the crack growth increments are reported in Table 7.2 while the progressive 
crack lengths and the related strain energy density factors are reported in 
Table 7.3. In Tables 7.4, the damage level of the finite elements is reported 
according to equation (2.73) and for different loading increments. The load­
displacement responses for a constant deflection increment of .l8 = 1 x 10-2 

cm and different geometrical shape factors bid, are displayed in Figure 7.8. 
The more flexible panels correspond to low ratios of bid and their load 
carrying capacities are also lower. 

The ratio of stiffness loss by material damage to total stiffness loss is 
plotted against the imposed displacement, 8 in Figure 7.9. The ratio reaches 
a maximum of about 50% and then decreases which shows that both material 
damage and crack growth are important. In Figure 7.10, the load P is plotted 
against the crack growth a - ao. The post-collapse behavior is not given. 
However, subsequent loadings would lead to complete separation of the 
panel. The SR-curves for bid = 1/2, 2/3 and 3/4 are displayed in Figure 
7.11. There appears to be an optimum bid ratio that maximizes sub critical 
crack growth. This is seen to occur at bid ~ 2/3. 

7.3. Variation in loading step 

In Figure 7.12, the load-displacement curves are displayed for bid = 3/4 and 
three different displacement increments: .l8 = 1 x 10-2 , 2 X 10-2 and 
4 x 10-2 cm. The results are not sensitive to changes in the load increment, 
A8. The ratio of stiffness loss by material damage to total stiffness loss is 
plotted as a function of the displacement, 8 in Figure 7.13. The trend is the 
same as that found in the preceding cases, but the decrease in damage is more 
rapid for the smaller load increments. The converse applies to the influence of 
crack growth. Shown in Figure 7.14 is the variation of the load P with crack 
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CASE No. (1) 

(a) 

(b) 

Fig. 7.7. Finite element mesh and deformed configuration related to the fust (a) and 
sixth (b) loading step of Case No.1 in Table 7.1. 

growth a - ao. These curves change more readily as .6.6 is varied. Figure 
7.15 gives a plot of S versus a by varying .6.6. Large steps of .6.6 tend to 
enhance brittle fracture by decreasing the amount of sub critical crack growth, 
but this effect is not pronounced. 
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TABLE 7.2. 
Load, displacement and crack growth increment at each loading increment and for each 
case in Table 7.1. 

Case no. (1) 
Increment Load/Thickness Displacement Crack growth increment 
j = I, 2, etc. Pj/t (kg/cm) OJ (10- 2 cm) ~aj (cm) 

1 387 1 0.364 
2 758 2 1.260 
3 1071 3 3.762 
4 1284 4 8.579 
5 1425 5 10.388 
6 1464 6 14.982 

Case no. (2) 
1 801 1 0.296 
2 1596 2 0.868 
3 2349 3 3.177 
4 3044 4 4.923 
5 3570 5 10.701 
6 3924 6 13.094 
7 4165 7 15.844 

Case no. (3) 
1 1019 1 0.230 
2 2036 2 0.647 
3 3033 3 1.768 
4 3972 4 4.630 
5 4735 5 10.210 
6 5286 6 13.015 
7 5754 7 16.072 

Case no. (4) 
1 2036 2 0.646 
2 4006 4 3.357 
3 5652 6 11.369 
4 6876 8 17.112 

Case no. (5) 
1 4014 4 3.347 
2 7206 8 15.769 

7.4. Size scale effect of panel with opening 

Figures 7.16(a) to (c) inclusive summarize the SR-curves for different bid 
and AfJld ratios. The amount of slow crack growth decreases as specimen 
size is increased with complete brittle fracture occurring at d = 960 cm. 

Figures 7.17(a) to (e) inclusive give the dimensionless load-displacement 
results for the five cases in Table 7.1. The vertical lines locate global crack 
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TABLE 7.3. 
Crack length and strain energy density factor at each loading increment and for each case 
in Table 7.1. 

Qzse no. (1) 
Increment Crack length Strain energy density factor 
j=I,2,etc. aj (em) Sj (kg/em X 10- 3 ) 

1 37.864 2.828 
2 39.124 8.203 
3 42.886 13.820 
4 51.465 63.827 
5 61.853 51.524 

Case no. (2) 
1 50.296 2.299 
2 51.164 6.128 
3 54.341 10.674 
4 59.264 22.301 
5 69.965 56.929 

Qzse no. (3) 
1 56.480 1.787 
2 57.127 4.865 
3 58.895 9.954 
4 63.525 30.141 
5 73.735 64.629 

Qzse no. (4) 
1 56.896 4.858 
2 60.253 15.005 
3 71.622 64.007 

Qzse no. (5) 
1 59.597 4.886 
2 75.366 83.022 

instability that corresponds to the strain energy density factor being critical 
and equal to Sc = 8 X 10-3 kg/cm. The maximum loads, Pg~x and P~~x 
obtained respectively from Linear Elastic Fracture Mechanics and Limit 
Analysis are given in Table 7.5. The stress-intensity factors used in the calcu­
lation are given by 

P (b ao) 
K[ = b1!2t f d' b (7.4) 

in whichf(L 1) = 4.78,f(L 1) = 2.36 andfC!,!) = 1.71. 
An approximate evaluation of the limit load can be made by the scheme in 

Figure 7.18. This gives 
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TABLE 7.4(a). 
Level of damage according to equation (2.73) in each finite element and at each loading 
increment. Case No.1 in Table 7.1. 

Damage element Incrementj = 1,2, etc. 
reference number 2 3 4 5 6 

1 14 25 25 25 25 
2 10 25 25 25 
3 5 13 13 13 
4 3 3 
5 6 20 25 
6 8 
7 
8 
9 

10 
11 
12 
13 
14 11 21 25 25 
15 
16 
17 
18 
19 
20 
21 

TABLE 7.4(b). 
The same as in Table 7.4(a). Case No.2 in Table 7.1. 

Damage element Increment j = 1, 2, etc. 
reference number 1 2 3 4 5 6 7 

1 10 23 25 25 25 25 
2 5 21 25 25 25 
3 3 9 9 9 12 
4 3 8 9 
5 4 19 25 25 
6 8 20 25 
7 3 6 
8 
9 

10 
11 
12 
13 
14 6 18 25 25 25 
15 
16 
17 
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TABLE 7.4 (b) (CONTINUED) 

Damage element 
reference number 

18 
19 
20 
21 

TABLE 7.4 (c), 

1 2 
Incrementj = 1,2, etc, 
345 

The same as in Table 7.4 (a), Case No, 3 in Table 7,1, 

Damage element 
reference number 

Increment j = 1, 2, etc, 

2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

TABLE 7.4 (d), 

2 3 

5 18 

2 

The same as in Table 7.4 (a), Case No, 4 in Table 7,1, 

Damage element Incrementj = 1,2, etc, 
reference number 2 3 

1 5 25 25 
2 8 25 
3 11 21 
4 4 16 
5 18 
6 2 17 
7 11 
8 
9 

4 5 

25 25 
14 25 

8 12 
3 10 

15 
3 12 

6 

13 24 

4 

25 
25 
25 
25 
25 
25 

6 7 

6 7 

25 25 
25 25 

4 
15 
25 25 
22 25 

25 25 
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TABLE 7.4 (d) (CONTINUED) 

Damage element 
reference number 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

TABLE 7.4 (e). 

Incrementj = 1,2, etc. 
234 

10 25 25 

The same as in Table 7.4(a). Case No.5 in Table 7.1. 

Damage element 
reference number 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 

p(3) 
max 

Incrementj = 1,2, etc. 
1 2 

25 
7 

11 
4 

2 

10 

(b/d)2 

(2 - bid) 

25 
25 
25 
23 
25 
24 
19 

6 

25 

163 

(7.5) 

The results in Figures 7.19(a) to (e) inclusive are normalized with respect to 
p~~x obtained from Linear Elastic Fracture Mechanics and plotted against d. 



www.manaraa.com

164 

210 

180 

<b 150 

~ 120 

90 o 

S 60 

DISPLACEMENT, 0 (10- 2 em) 

Fig. 7.8. Load-displacement diagrams for three different geometrical ratios bid and 
All = I X 10- 2 cm. 
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Fig. 7.9. Ratio of stiffness loss by material damage to total stiffness loss as a function of 
displacement, for three different geometrical ratios bid and All = I X 10-2 em. 
Fig. 7,10. Load-crack growth diagrams for three different geometrical ratios bid and 
All = I X 10- 2 cm. 
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Fig. 7.11. Strain energy density factor versus crack growth for three different geometrical 
ratios bid and All = I X 10-2 cm. 



www.manaraa.com

210 

180 

150 
M 
0 

x 120 m 
~ 

90 
0 « 
0 
..J 60 

30 

0 
0 2 3 4 

o 1',8 = 1 , 10- 2 em 
o 1',8 = 2 , 10- 2 em 

'" 1',8 = 4 , 10-- 2 em 

5 6 

DISPLACEMENT, 8 (10- 2 em) 

165 

8 

Fig, 7.12, Load-displacement diagrams for bid = 3/4 and three different loading in­
crements, 

w 
(:J 
« 100 ::; 
« 

o 60 = 1 x 10- 2 cm 0 
<Jl 

..J <Jl 

o 60 = 2 x 10- 2 cm ~ 0 80 ..J 

~IU) '" 60 = 4 x 10- 2 em f-- <Jl « w 
60 ::; ~ 

>- u.. 

~ 
l> 

co f= 
<Jl 

<Jl 

<Jl ..J 40 0 « 
..J f--
<Jl 0 
<Jl f--
w 20 z 
u.. 
u.. 
f= 
<Jl 

2 3 4 5 6 7 8 

DISPLACEMENT, 0 (10- 2 em) 
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Fig. 7.15. Strain energy density factor versus crack growth for three different loading 
increments and bid = 3/4. 
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Fig. 7.16. (a) Straight line plots of strain energy density factor versus crack growth, 
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7.16(a). Case No.2 in Table 7.1. (c) The same as in Figure 7.16(a). Cases No.3, 4 and 5 
in Table 7.1. 
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TABLE 7.5. 
(a) Maximum load for different size scales and according to the various theories: Strain 
Energy Density Theory, Linear Elastic Fracture Mechanics, Limit Analysis. Case No.1 in 
Table 7.1. (b) The same as in Table 7.5 (a). Case No.2 in Table 7.1. (c) The same as in 
Table 7.5 (a). Case No. 3 in Table 7.1. (d) The same as in Table 7.5 (a). Case No.4 in 
Table 7.1. (e) The same as in Table 7.5 (a). Case No.5 in Table 7.1. 

Case no. (1) 

Size d, em 30 120 300 960 

PM) (SEDT), kg 412 5250 20625 63058 
p(S.x (LEFM), kg 348 2787 11 015 63058 
p¥.~ (Limit analysis), kg 180 2880 18000 184320 
P 1 ax/p(2) ratio 1.18 1.88 1.87 1.00 
p'f,) /p'(',F ratio 0.52 1.03 1.63 2.92 max max 

Case no. (2) 

Sized, em 30 120 300 960 

p(l?.x (SEDT), kg 1162 13 200 56250 147532 
pM?.x (LEFM), kg 815 6520 25772 147532 
p*?.x (Limit analysis), kg 360 5 760 36000 368640 
P I) /p(2) f 1.43 2.02 2.18 1.00 mrx {zax ra 10 

pMax/Pni~x ratio 0044 0.88 lAO 2.50 

Case no. (3) 

Sized, em 30 120 300 960 

p(l?.x (SEDT), kg 1462 16800 71250 216540 
p'(',) (LEFM), kg 1196 9570 37828 216540 
p¥.~ (Limit analysis), kg 486 7776 48600 497664 
P 1 /p(2) f 1.22 1.75 1.88 1.00 ~ax ~axra 10 

PrJ?.x/Pni~x ratio 0041 0.81 1.28 2.30 

Case no. (4) 

Size d, em 30 120 300 960 

PM?.x (SEDT), kg 1980 20760 75000 216540 
p(2~X (LEFM), kg 1196 9570 37828 216540 
p¥.?.x (Limit analysis), kg 486 7 776 48600 497 664 
P I) /p(2) ratio 1.65 2.17 1.98 1.00 
p'f,F/p'(',~x ratio 0.41 0.81 1.28 2.30 max max 

Case no. (5) 

Size d, em 120 300 600 960 

p(l) (SEDT), kg 33000 135000 360000 216540 
pM~ (LEFM), kg 9570 37828 107000 216540 
P*~x (Limit analysis), kg 7776 48600 194400 497664 
P.riax/PM~ ratio 3.45 3.56 3.36 1.00 
p(3) /p(2 ratio 0.81 1.28 1.82 2.30 max max 
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Fig. 7.17. (a) Dimensionless load-displacement diagrams, varying the size scale of the 
panel. Case No.1 in Table 7.l. (b) The same as in Figure 7.17(a). Case No.2 in Table 
7.l. (c) The same as in Figure 7.17 (a). Case No. 3 in Table 7.l. (d) The same as in 
Figure 7.17 (a). Case No.4 in Table 7.1. (e) The same as in Figure 7.17 (a). Case No.5 
in Table 7.1. 
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Fig. 7.1S. Approximate evaluation of the limit load at the ligament. 
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Fig. 7.19. (a) Maximum load predicted by Strain Energy Density Theory and by Limit 
Analysis referred to the critical load from LEFM. Case No.1 in Table 7.1. (b) The same 
as in Figure 7.19(a). Case No.2 in Table 7.1. (c) The same as in Figure 7.19(a). Case 
No.3 in Table 7.1. (d) The same as in Figure 7.19(a). Case No.4 in Table 7.1. (e) The 
same as in Figure 7.19(a). Case No.5 in Table 7.1. 
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The strain energy density theory prediction shows that the normalized load 
rises with d to a maximum of P~kJP~~ ~ 2.0 and then decreases to unity. 
The ratio P~kJP~~x represents also the ratio of fictitious to real KlC , which 
is larger than unity when the damage dissipation prevails over the size effect. 
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Fracture testing and design 

8.1. Model scaling and physical similitude 

Preliminary remarks. One of the major problems in analyzing the strength 
of materials is the so-called 'size effect'. Despite the numerous research 
efforts, this effect is still not completely understood. Two important aspects 
of size effects are: 

(1) Uncracked structures show an increase in brittleness when their size is 
increased, and 

(2) Notched (or cracked) structures become less sensitive to the presence of 
mechanical imperfections when their size is decreased and they tend to 
behave in a more ductile fashion. 

These two effects have been known for a long time, but it is only recently 
that a consistent explanation could be given in terms of Fracture Mechanics 
concepts. The two fundamental failure modes known classically are brittle 
fracture and plastic collapse both of which may occur depending on the com­
bination of the load and geometric variables. Although Plastic Limit Analysis 
can be applied to treat the failure of structures due to excessive distortion and 
Linear Elastic Fracture Mechanics to the onset of rapid fracture, both of 
these disciplines apply only at the global scale level. They cannot address 
failure by yielding and fracture [1-9] that is the rule in practice rather than 
the exception. 

Materials with aggregates as concrete cannot be analyzed simply by 
applying the Linear Elastic Fracture Mechanics concept.* The difficulties lie 
in explaining the experimental results and in extrapolating them to the 
structural design of large structures that contain heterogeneity and non­
linearity behavior such as concrete. There are two fundamental reasons why 
cementitious materials cannot be treated by Linear Elastic Fracture Mechanics: 

* Since the stress-intensity factor K[ [11) or K[C is derived from a linear elastic analysis, 
it cannot be used to explain nonlinear effects at the crack tip due to change in specimen 
size. 

173 
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(1) Slow crack growth, which occurs prior to unstable crack propagation 
such that the actual crack length at termination is not known, and 

(2) Microcracking which occurs near the crack tip, where energy is dissipated 
due to plasticity as in the case of metallic materials. 

The presence of mechanical defects such as cracks or notches is significant 
because they alter the local stress field. This effect interacts with specimen 
size as smaller specimens store less energy and tend to be more ductile while 
the opposite holds for the larger specimens. Peterson [10] has shown that 
below a certain size threshold the net section rupture stress coincides with 
the ultimate strength au where the stress raisers are no longer sensitive. 

The only theory that can consistently explain the nonlinear behavior of 
concrete from uniaxial data alone is based on the strain energy density 
concept [12-14]. It can predict crack initiation, slow growth and final 
termination without invoking arbitrary assumptions. The SR·curves* that 
consist of plotting the strain energy density factor S as a function of crack 
growth are straight lines for crack growth data that are highly nonlinear. 
This salient feature of the theory permits extrapolation of specimen sizes, 
loading rates or steps and material types to situations that are not tested. 
The examples presented in the earlier chapters of this book have demonstrated 
the versatility and usefulness of the SR-curves. The results are particularly 
pertinent for establishing design formulas. 

Dimensional analysis. The size scale effect can be analyzed by resorting 
to dimensional analysis. Two of the important parameters that were used 
are the strain energy density function [(dW/dV)] = [F] [Lr2, and the strain 
energy density factor [S] = [F] [L rl. When the structural size reaches 
certain upper limit, stable crack growth ceases to occur and the crack growth 
becomes catastrophic. Material inhomogeneity, of course, also interacts with 
the loading depending on the specimen or structure size which can vary from 
case to case. This is why it would be more consistent and less problematic to 
focus attention on the rate of energy dissipated and/or stored in a unit volume 
of material. 

To start off with, the fundamental mechanical quantities to be defined 
are length [L], force [F] and time [T]. Consider a certain quantity 
[Q] = [L]Cl:[Fl"[TF. If the length unit of measure is multiplied by A, the 
force unit of measure by ¢ and the time unit of measure by r, then Q is 
multiplied by A Cl:rp"r 'Y. Define three mechanical quantities QI, Q2, Q3 as follows: 

(8.la) 

* It should be cautioned that the crack-growth model used throughout this book assumes 
elastic unloading. Sih has shown in [14] that the assumption of plastic unloading will 
only alter the SR-curve results quantitatively but not qualitatively. 
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(S.l b) 

(S.lc) 

If the units of measure (L, F, T) are multipled by A, cp, T, then the units 
measuring QI, Q2, Q3 are multiplied by XI, X2, X3 so that 

(S.2a) 

(S.2b) 

(S.2c) 

It follows that 

(S.3a) 

(S.3b) 

(S.3c) 

which is a linear system of equations with unknowns In A, In cp and In T. It 
admits one and only one solution, if and only if the coefficient determinant 
is different from zero: 

1'1] 
1'2 =1= 0 

1'3 

(S.4) 

Equation (S.4) when satisfied makes the three quantities Qb Qz and Q3 
dimensionally independent. They may thus be regarded as fundamental 
quantities. 

Another equivalent definition of dimensionally independent quantities 
can be invoked. The three quantities Ql, Qz, Q3 are dimensionally independent 
when any quantity [Qo] = [L]~o[Fll1o[TFo can have the same physical 
dimensions as the product Q~lOQ~20Q~'O for appropriate values of 0:10, 0:20 

and 0:30. From equations (S.1), it follows that 

(S.5a) 

(8.Sb) 
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(8.5c) 

which is a linear system with unknowns alO, a20 and a30 and the transposed 
matrix DT of the system in equations (8.3) as coefficient matrix. Equations 
(8.3) and (8.5) admit one and only one solution, if and only if the condition 
in equation (8.4) holds. There are only two fundamental quantities in the 
statical field: length [L] and force [F], since time does not enter. Under 
these considerations, it is possible to assert that stress, [a] = [L r2 [F] , 
length [L] and time [T] are dimensionally independent: 

-2 0 

D o 0 

o 0 

Buckingham's theorem. The mechanical behavior of a structural element 
and its collapse mechanisms can be scaled by a model provided that the size 
reduction is not too small. In the case of a cracked body, two different failure 
modes are possible: 

(1) collapse at ultimate strength caused by the maximum normal stress a 
with the crack considered as a weakening of the cross-section without 
including the local effects, and 

(2) crack propagation fracture determined by the critical stress-intensity 
factor, K1C , assuming that structure geometry and loadings are sym­
metrical with respect to the crack line. The two generalized forces 
are [a] = [Lr2[F] and [K1 ] = [Lr3/2[F]. 

The Buckingham'S Theorem will now be applied to analyze a simple system 
that consists of a body symmetrically loaded with respect to the crack line. 
The material is homogeneous, isotropic and elastic-plastic. In one case, the 
yield strength ay will be used as reference and the other considers the tensile 

Q 

Fig. 8.1. Cracked body subjected to generalloading. 
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strength au. It is evident from Figure 1.3 that the two cases are the limits of 
an elastic-linear softening material. 

Let qo be the load at final collapse for the cracked structure in Figure S.l. 
This load is a function of several variables and can be expressed as 

(S.6) 

where qi are physical quantities with different dimensions and 'i are non­
dimensional numbers. Each quantity with certain dimensions appears just 
once in the function F. For example, in the case of an elastic-work-hardening 
material, ql could be the ultimate strength au and'i the ratio of the yield 
strength ay to the ultimate strength; q2 could be a linear size b of the structure 
in Figure S.l; '2, '3, etc., the ratios of the other sizes, which are characteristic 
of the structural geometry with the reference size b; q 3 could be the fracture 
toughness K1C ; and so on. Consider now two dimensionally independent 
quantities ql and q2. They are considered as fundamental quantities such that 
the product q~lOq~2o has the same dimensions as qo for suitable values of alO 

and a20. In the same way, the product q~13q~23 can have the same dimensions 
as q3, for suitable values of a13 and a23, and so on. The function in equation 
(S.6) can therefore be transformed into 

(S.7) 

The function F becomes G because of nondimensionalization. If the unit of 
measure of ql changes, G, being a nondimensional number, does not vary. 
Therefore, G is not really a function of q 1 nor of q2. It is only a function of 
(n - 2 + m) nondimensional numbers, and thus 

(S.S) 

In the simple case of an elastic-perfectly plastic material in Figure S.l, qo is 
given by 

ao It) 
b' b' b 

(S_9) 

where the initial crack length ao is also included. If ay and b are regarded as 
fundamental quantities, then equation (S.9) becomes 
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ao I t) 
b' b' b 

(8.10) 

where the function G depends on the geometry of structure and external 
loadings. It is possible to separate function G into two functions G1 and G2 as 

(8.11 ) 

The function G1 governs the notch sensitivity phenomenon and is a function 
of the nondimensional number 

(8.12) 

and of the relative crack length ao/b. Note that both mechanical properties 
of the material and size of the body appear in s which will be referred to as 
the brittleness number. 

Structural geometries. For the tension test in Figure 4.1, the stress-intensity 
factor is given by equation (4.1) from which it is possible to obtain the load 
at incipient fracture: 

( 
1T ao)1!2 

U(2) cos "2 b-
max -- = S 

U y !!..~<!. 
2 b 

The load corresponding to plastic collapse for the cracked section is 

ao 1--
b 

(8.13) 

(8.14) 

In Figure 8.2, the non dimensional load at fracture is plotted as a function of 
the relative crack length /!lo/b for different values of the brittleness number 
s = KJC/uy..j2b. The load at which plastic flow begins is also given. It is 
evident that the fracture data have no meaning for s higher than the critical 
value So "" 0.54 since plastic collapse is the governing mechanism for s > 0.54. 

For the three points bend test in Figure 3.1, the stress-intensity factor is 
given by equation (3.11) from which the load at incipient fracture is deter­
mined: 
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Fig. 8.2. Nondimensional load at fracture (thin line) and at plastic collapse (thick line) 
as a function of the relative crack length. Tension test. 

s 
(8.15) 

The plastic collapse load obtained from the limit analysis is 

(8.16) 

whereas the ultimate strength for an elastic material is 

(8.17) 

The data in Figure 8.3 are analogous to those in Figure 8.2. For an elastic­
perfectly plastic material, fracture data are valid only if s < 0.75. The fracture 
curve is tangent to the plastic flow curve at s = 0.75. Since 0.75 > 0.54, (frac­
ture data limits of an elastic-plastic material), it can be asserted that the three 
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Fig. 8.3. The same as in Figure 8.2. Three point bend test. 

point bend specimen is more sensitive to notch effects than the tension speci­
men if the material is elastic-perfectly plastic. The converse holds for an 
elastic-brittle materiaL 

For the compact test in Figure 8.4, the stress-intensity factor is given by 

(8.18) 

in which 

( ) ( )
112 ( )3/2 )5/2 

g a; = 29.6 abO - 185.5 abO + 655.7 (:0 

( )712 ( )912 
-1017 :0 +638.9 abO 
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Fig. 8.4. The same as in Figure 8.2. Compact test. 

for 0.3";; (ao/b)";; 0.7. From equation (8.18), the crack extension force is 
obtained: 

s 
(8.19) 

The plastic or ultimate strength collapse at the weakened section due to the 
eccentric load are given respectively by 

Q(3) 
max 

(8.20a) 
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Fig. 8.5. Cracked cylinder pressure vessel (a). Plastic collapse of the uncracked vessel (b). 

(8.20b) 

Fracture data in Figure 8.4 are significant up to s ~ 1.02. Fracture collapse 
can occur in small specimens provided that the initial cracks are not too 
long. For s = 0.9, the relative crack length must be ao/b :s 0.4. The condition 
of small scale yielding, according to ASTM-E399 [11] however, calls for the 
opposite, i.e., for sufficiently long cracks with ao/b > 0.45. 

For the cracked cylinder pressure vessel in Figure 8.5(a), the pressure of 
plastic collapse of the uncracked vessel may be evaluated from Figure 8.5 (b) 
as 

(3) / R2 
Pm.a:.Oy --1 

Rl 
(8.21) 
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Fig. 8.6. Pressure of failure for the cracked cylinder vessel in Figure 8.5 (a). The upper 
horizontal line represents plastic collapse of the uncracked vessel in Figure 8.5 (b). 
R./R, = 1.1. 
Fig. 8.7. The same as in Figure 8.6. R./R, = 2.0. 
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On the other hand, the pressure at which crack propagation begins for small 
cracks is found as 

p~/a, = 0.25 [(~:r -1] Ii (8.22) 

In Figure 8.6, the crack propagation curves are given for Rz/R 1 = 1.1 while 
the brittleness number, S, is varied. The upper horizontal line represents 
plastic collapse. With a crack depth of ao/b = 0.1, the brittleness number 
must be higher than 0.60 in order for the Plastic limit Analysis to be valid. 
It must be lower than 0.60 so that linear Elastic Fracture Mechanics can 
be applied. Similar results are shown in Figure 8.7 for Rz/R 1 = 2.0. The 
transition brittleness number is approximately 0.42. Hence, ductility appears 
to be enhanced by raising the fracture toughness of the material and/or by 
reducing the sizes of the specimen. 

Data obtained from the damage-crack growth model [12-14] in this 
book may be regarded as a generalization of the results based on the critical 
stress intensity factor concept. The brittleness number s, which governs the 
transition between plastic collapse and brittle fracture, can be related to the 
number defined in equation (3.l0) [12] : 

S* = SZ (1 + v)(l - 2v) (8.23) 
1f 

Here, slow crack growth and material damage are not considered. That is, 
the relation (dW/dV)c = a~/2E has been used with the assumption that local 
and global crack instability occlir simultaneously. This, of course, is an 
idealization that does not occur in nature. 

Dugdale crack model. The Dugdale crack in an infinite sheet [15] considers 
a plastic zone, r y/{a + r y) that varies as a function of the applied normal 
stress a in Figure 8.8{a): 

1
0 10 , 

~ 

plastiC zone ·'1 I"' p:i 
2a ,- "I 

I-
2(a + 'yl 

.( 

jo 10 
(al (bl 

Fig. 8.8. Dugdale crack in an infinite sheet (a). Plastic pressure tending to close the 
fictitious crack (b). 
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(8.24) 

According to equation (8.24), the stress u achieves the yield strength uy when 
r y fa -+ 00 and the plastic zone occupies the entire sheet. Suppose now that the 
plastic zone size is constant under the plane stress condition and given by 

(8.25) 

and then consider the plastic collapse separately. The pressure in the plastic 
zone is uy that tends to close the fictitious crack of length 2(a + r y) at 
distances r < r y from its tip, Figure 8 .8(b). 

Define a dimensionless fracture load, qo by ignoring the plastic deformation 
at the crack tip such that 

s 
(8.26) 

g(~) 

where s is the brittleness number and g the function that depends on the 
structure and load geometry with ~ being the relative crack depth. The 
following assumptions will now be invoked to solve the problem in Figure 
8.9(a): 

(1) Replace the plastic pressure on the prospective crack surfaces in Figure 
8.9(b) with the equivalent force P*, and bending moment M* shown in 
Figure 8.9(c). 

(8.27a) 

M* - u r t (~ - a _ r y ) 
y y 2 2 (8.27b) 

(2) Fracture collapse is to be evaluated at the tip of the fictitious crack of 
relative length 

r S2 
~* = ~+~ = ~+-

b 2lr 
(8.28) 

The new fracture load, therefore, becomes 

(8.29) 
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Fig. 8.9. Process zone (a). Plastic pressure (b). Equivalent force and moment (c). 

where the functions Y M and Y F are given by equations (6.22) and (6.24). 
If equations (8.27) are put into equation (8.29), there results 

(8.30) 

Figures (8.10) to (8.12) plot the fracture loads qo for the three point bend 
test, the four point bend test and compact tension test as a function of the 
real crack depth ~ while the brittleness number, s, is varied. As before, both 
plastic collapse and brittle fracture can occur depending on the value of s. 

Galileo's early concept. As mentioned earlier, the concept of size effect is 
not new. In his fundamental volume 'Discorsi e dimostrazioni matematiche 
intorno a due nuove scienze attenenti alIa mecanica e i movimenti locali' 
(1638), Galileo discussed size effect in relation to material strength of solids 
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Fig. 8.10. Interaction between fracture and plastic collapse. Three point bending test. 
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Fig. 8.11. Interaction between fracture and plastic collapse. Four point bending test. 

subjected to their own weight, Figure 8.13(a). He observed that small models 
of machines are proportionally much stronger than full-scale machines. If 
only the shape were responsible for the strength, then any object could be 
reproduced at any scale level without sacrificing its strength. Quoting from 
his work: 'a horse will break its bone when falling from a height of three 
arms while a cat will not be injured falling from a height of eight or ten, 
neither a cricket from a tower, nor an ant falling from the moon ... '. Galileo 
continues to argue that: 'Nature could not make trees of enormous magnitude 
because the branches would then break under their own weight ... nor giant 

0.00 L~_~_~========~~~ 
0.0 0.1 0.2 0 3 0.4 0.5 0.6 0.7 
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Fig. 8.12. Interaction between fracture and plastic collapse. Compact test. 



www.manaraa.com

187 

(a) 

(b) 

Fig. 8.13. Original drawings by Galileo: material strength of solids subjected to their 
own weight (a); size effect in relation to the animal bones (b). 

men and animals, unless much harder and stronger materials or much less 
slender bones were used ... '. Illustration for the less slender bone is given 
in Figure 8.13(b). 

Galileo, of course, was not aware of Fracture Mechanics nor did he refer 
to the scale effects discussed in this book. He did consider the failure of solid 
bodies under their own weight by applying the stress criterion. If b is a 
characteristic length of the body and is allowed to vary as the shape is kept 
constant, then P - b3 , A - b2 and a - PIA - b. Since the weight P increases 
with the volume, the stress due to body weight increases proportionally with 
b and hence strength can be scaled in an inversely proportional manner with 
regard to b. His concept could be extended to failure based on stress-intensity 
factor criterion with K[ - p/b 3/2 leading to K[ - b3/2 • Hence, strength is 
inversely proportional to b with the exponent 1.5 which decreases more 
rapidly with size than strength as implied by Galileo. 
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8.2. Experimental investigation 

Early work. The stress-intensity factor was first proposed by Griffith and 
later on advanced by Irwin [16]. Although the size effect was not resolved 
directly, it did call attention to the importance of treating defects that are 
inherent in the material and contribute to the change in failure modes as 
specimen sizes are altered. Of particular significance is the KIC/a u ratio 
that serves as a measure of the sensitivity of materials to failure by crack 
propagation. The fact that K[C applies only to specimens that are sufficiently 
thick has made investigators aware of the thickness effect in fracture mech­
anics. 

It was as early as 1933 that Peterson [10] had commented that 'it seems 
that where stress concentration is not present the results are in most cases 
independent of size. However, with stress concentration present, the results 
of dynamic tests are quite different. Smaller specimens tend in general to give 
higher values of strength. The effect of time as reflected in the speed of 
testing is perhaps important where stress concentration is present'. In connec­
tion with Peterson's paper, Nadai [17] concludes that 'the conditions of 
similarity in fatigue tests probably depend on further mechanical or other 
factors not yet found or established, and it will be an interesting task, in the 
future, to search for these unknown variables or effects which seem to 
influence fatigue failures'. In retrospect, Nadai has already perceived that a 
more fundamental quantity would eventually be found to explain these 
seemingly different phenomena of failure behavior from a unique theory. 
The strain energy density theory* [18] discovered in 1973 by Sih has indeed 
opened the door to such a possibility. It has the capability to predict the 
failure of structural members with or without initial flaws under monotonic, 
fatigue and creep loading from uniaxial data alone. 

More recently, Glucklich and Cohen [20] treated the problem of size ef­
fects and explained that 'specimen size (or, its energy-storage capacity) influ­
ences its brittle-ductile transition and strength. This effect is not the recogni­
zed statistical one, but derives from the strain energy in the system and 
concerns the stability of slow-growing cracks after nucleation. The 
thesis put forward is, therefore, that for a given temperature, strain 
rate and state of stress, ductility decreases with increasing size'. Although the 
work lacked quantitative assessment of actual problems, it does conceptually 
confirm the very basic idea of the strain energy density theory [18]. 
In relation to concrete materials, Kaplan [21] performed three and 
four point bending tests and determined the critical value of strain energy 

* A corollary of this theory has recently been proposed by Sih [19] that can address 
the damage of every element for each load increment in the structure without having 
a prior knowledge of the constitutive relations in general other than the uniaxial data. 
This approach is particularly useful for analyzing the failure behavior of concrete and 
rock that cannot be explained by the theory of plasticity. 
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release rate, GIG for different specimen sizes. The values of GIC were 
found to vary widely with specimen size. He attributed the variation to 
nonlinear plastic effects and slow crack growth prior to the unstable crack 
propagation that are not included in the energy release concept of GIC ' The 
Linear Elastic Fracture Mechanics approach was already in suspect. 

Similar works were also carried out by Romualdi and Batson [22] and by 
Glucklich [23] for reinforced concrete. They examined the crack arrest at 
the interface between concrete and steel and formed a series of tension tests 
with cracks of different length. The observed GIC values increased with crack 
length. The conclusion was that GIC is an increasing function of the crack 
length, instead of a material constant. Glucklich [23] considered dissipative 
effects at the crack tip in concrete as a result of microcracking rather than 
plastic flow. The heterogeneity of concrete was analyzed. 

In 1969, Naus and Lott [24] determined the fracture toughness K IC of 
Portland concrete by varying the water/cement ratio, air content, fine aggregate 
content, curing time, and maximum size of coarse aggregate. A consistent 
variation of K IC was observed. Welch and Haisman [25] also explained that 
the KIG and GIC variations were caused by slow crack growth. Unlike the 
others, they claimed KIG and GIG to be 'material constants', and their 
being independent of the ultimate strength au. Three point bending tests on 
cement pastes, mortars and concretes of different composition were also 
performed by Moavenzade and Kuguel [26]. The specimens (1 x I x 10 
inches) might have been too small to provide reliable results. They found 
fracture toughness values decidedly higher for concretes than for mortars 
and pastes and offered the following explanation with regard to the presence 
of the aggregate: (1) it increases the micro cracking and then scatters the 
available energy in a number of small streams (microcracks) rather than 
conveying it in a single large flow (macrocrack) and (2) it directly arrests the 
macro crack run by a higher GIG' These discrepancies have been accounted for 
by Sih [13, 14] applying the strain energy density theory. Additional works 
on mortar and concrete prisms in compression with an inclined crack were 
also done by Desayi [27] . 

Recent work. Shah and McGarry [28] studied the notch sensitivity problem 
in mortar and concrete and concluded that they are notch insensitive when 
the crack length is lower than a few centimeters. Brown [29] performed 
a series of bending tests and double cantilever beam tests using cement 
paste and mortar. The KIG values when plotted against the nondimensional 
crack length alb showed a great deal of scatter, Figure 8.14. Here, b is the 
beam height. Brown [30] also studied the resistance to crack propagation 
in glass-fiber-reinforced cement paste. A 'pseudo-toughness' was defined for 
this material and found to increase linearly with crack growth at a rate pro­
portional to the fiber content. Such an increase was rapid and almost linear 
between 4 and 10 mm crack growth. Above 10 mm, the rate of increase 
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Fig. 8.14. Bell-shaped curves of fracture toughness versus relative crack depth according 
to the experimental data by Brown [29]. 

seemed to slacken with some results showing ill-defined plateaus_ Brown and 
Pomeroy [31] concluded that the addition of aggregate not only tends to 
increase toughness, but also leads to a progressive increase in toughness as the 
crack grows. The increase in toughness is proportional to the aggregate 
content. A review of the foregoing works on concrete fracture testing has 
been made by Naus, Batson and Lott [32] . 

Further studies concerning notch sensitivity and specimen sizes were 
made in [33-35]. Walsh [33] assumed that the zone of stress disturbance 
is surrounded by an area in which the stresses are elastic in nature if the 
specimen is large enough. He attributed the KIC variability to specimens being 
too small [33] rather than to 'slow crack growth'. Higgins and Bailey [34] 
performed fracture tests for a cement paste and obtained increasing K1C 

values, as the specimen size increased. They deduced that Linear Elastic 
Fracture Mechanics is not applicable to hardened cement paste samples of the 
size used in their investigation, because the zone of stress perturbation around 
the crack tip is not small compared with the specimen and crack sizes. 
Schmidt [35] measured the fracture toughness, K IC , of a calcareous rock 
(Indiana limestone) by three point bending tests and obtained KIC values which 
increased with the crack length and the specimen width, up to a maximum 
value. The upper limit was considered to be the true value of Krc in plane 
strain. Evans, Clifton and Anderson [36] studied on the plain and polymer 
impregnated mortars and showed that the fracture mechanics parameters are 
independent of the crack length for cracks larger than about 2 cm. Acoustic 
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emission measurements indicated that the susceptibility to micro cracking is 
substantially retarded by polymer impregnation. 

Tests on mortar and concrete were carried out by Mindess and Nadeau 
[37] to find whether fracture toughness depended on the specimen thickness. 
No dependence was found due to the fact that concrete is a truly brittle 
material and the size of the plastic zone is negligible. Bear and Barr [38-40] 
suggested that two fracture tests should be performed with samples taken 
from concrete beams by a radial drill. In the bending test [39] , they obtained 
K[c values that increased with notch depth, while in the eccentric compression 
test [40], the K[c values decreased. In the eccentric compression tests on 
circumferentially notched bars, they also observed that if a shallow notch 
is used, shear failure can occur prior to crack propagation. Henry and Paquet 
[41-43] published fracture toughness values of rocks that varied with 
porosity and temperature. Moreover, the rock anisotropy influenced the 
fracture behavior such that some planes are more susceptible to crack propa­
gation. In addition to the usual bending tests, they proposed a particular 
Brazilian test with a pre-cracked disk [43] . Hillemeier and Hilsdorf [44] have 
reported fracture toughness of single concrete compounds, i.e., cement 
paste, aggregate and interface paste-aggregate. The eccentric force of the 
compact test was produced by a wedge, changing compression into traction 
loading, Figure 8.15, such that crack growth can be easily controlled. For 
cement paste, they obtained K 1C values that decreased with crack depth. 
Gj¢rv, S¢rensen and Arnesen [45] observed how notch sensitivity decreased 
as the crack depth increased. In their opinion, this is due to the particular 
testing procedure and support conditions; consequently, it may not reflect 
the true behavior of the material. Cook and Crookham [46] performed four 
point bending tests on impregnated polymer concrete. For notch depth 
ratios greater than approximately 0.35, K[c values decreased as crack lengths 

Fig. 8.15. Compact test where the eccentric force is produced by a wedge [44]. 
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increased. This phenomenon is caused by cracks that are either too short or 
too long. As a result, the collapse load takes precedence to fracture, Figure 
8.16(a) to (c). Swartz, Hu and Jones [47] considered the method of 
compliance measurement as a suitable and convenient technique for monitoring 
crack growth in plain concrete beams subjected to repeated loads. They did 
not consider the fracture toughness parameter normally used as a pertinent 
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material constant. Strange and Bryant [48] reported the results of their 
bending and tension tests on concrete, mortar and paste. Again, the fracture 
toughness KIC did not remain constant but varied with specimen and crack 
size. The variations were small only when the cracks are sufficiently long. 
Their conclusion is that concrete can not be regarded as an ideal elastic 
homogeneous material. A region of non-elastic behavior must exist at the 
crack tip and linear elastic stress analysis is not valid. Sok and Baron [49] 
observed that the energy necessary for fracture increases as the crack 
propagates. A resistance-curve was introduced and regarded as a fracture 
material property. Swamy [50] presented a review of the experimental 
results regarding fracture toughness measurements in concrete materials. 
Values of GIC and K IC obtained by various investigators were tabulated. 
Additional criticisms of the Linear Elastic Fracture Mechanics theory was 
made by Ziegeldorf, MUller and Hilsdorf [51] with regard to notch sensitivity. 
They explained the increase in net failure stress of notched specimens as the 
notch depth increases, after passing through a minimum, Figure 8.16(b). A 
theoretical and experimental analysis of crack formation in concrete were 
presented later in [52]. The investigations indicate that cracks due to internal 
desiccation exist in concrete and form in the aggregates having a diameter 
larger than a critical size. 

All of the aforementioned experimental findings confirmed that KIC or 
GIC cannot be regarded as constants for concrete-like materials. The material 
nonlinearity ahead of the crack and the process of slow crack growth must 
be treated in the theoretical model by a suitable failure criterion. 

Further work. Additional studies were made by Carpinteri [1] on the 
notch sensitivity in fracture testing. The dimensional analysis was used with 
attention focused on the quantities [a] = [Lr2[F] and [KI ] = [Lr3/2[F]. 
A nondimensional brittleness number s, was introduced to define notch 
sensitivity. Inconsistencies in the experimental data such as 

(1) increase and decrease in fracture toughness, K IC, with crack length; 
(2) increase in K IC with specimen size and 
(3) variation of K IC with test geometry, were explained. 

The experiments of Carpinteri [3, 53] involved in determining the fracture 
toughness parameters, KIC and GIC , for a Carrara marble, a mortar and two 
concretes with different maximum aggregate size. The three point bending 
test was used. The variations of KIC in Figure 8.17 are caused by systematic 
errors rather than by true statistical fluctuations. There is, in fact, a trend 
in the results in terms of the relative crack depth for marble and concrete. 
The K IC values increased for small crack depth alb and decreased for large 
depth. Saouma, Ingraffea and Catalano [54] reexamined the results by 
Kesler, Naus and Lott [55] by considering the finite sizes of the specimens 
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Fig. 8.17. Bell-shaped curves of fracture toughness versus relative crack depth according 
to the experimental results by Carpinteri [3,53]. 

and showed that a single-parameter KIC approach to crack propagation in 
concrete structures can be used within engineering accuracy. 

The February 1980, issue No. I, of the International Journal 'Cement 
Composites', edited by Dr. R.N. Swamy, was devoted to the fracture mech­
anics of fibre-reinforced concrete. Mai, Foote and Cotterell [56] presented 
an investigation on the size effects of asbestos-cellulose cement composite 
using three point notched bend beams with geometrically scaled dimensions 
from I to 8 except for thickness which was constant. It was found that the 
unit size beams of 25 mm depth were notch insensitive and failure occurred 
when the net section stress was equal to the modulus of rupture. For the 
large specimens, KIC were much larger than those obtained for the smaller 
specimens. Theoretically speaking, the scaling of cracks in geometrically simi­
lar nonlinear elastic structures [57,58] was also considered. Visalvanich and 
Naaman [59] presented fracture test data related to asbestos cement DCB 
specimens, Figure 8.18(a). They observed that the apparent critical stress­
intensity factor increased rapidly and reached a plateau after a short crack 
extension. It decreased, however, as the crack reached about 14 inches. The 
KrcCa) data are shown in Figure 8.18(b). Petersson [60] determined the 
values of the critical strain energy release rate, Gre for the three point bending 
and tensile specimens, Figure 8.19(a). The results appear highly affected by 
geometry and size, Figure 8.19(b). A fracture energy 
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(8.31) 

was found to agree more favourably with the results, Figure 8.19(c). Arrea 
and Ingraffea [61] made a combined experimental and numerical investiga tion 

(a) 

(b) 
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on mixed-mode crack propagation in mortar and concrete. The experimental 
program consisted of tests on three series of beams under a four-point loading 
system that created a high KIl/K] ratio at the tip of a saw notch, Figure 
8.20(a). As the crack propagated from the notch, this ratio decreased since the 
Mode I stress-intensity factor started to dominate. The crack trajectories 
were predicted exactly by the application of the Strain Energy Density 
Theory, Figure 8.20(b). The behavior of the beams was reproduced satis­
factorily by the numerical analysis only when aggregate interlocking effects 
were included. 

Hillerborg and Petersson [62] also proposed a method for determining 
the fracture energy, GF of mortar and concrete by using the three point 
bend test of very slender notched beams. A recommendation is still being 
made by the R.I.L.E.M. 50-FMC Committee [63]. The results obtained at 
the 'Istituto Sperimentale Modelli e Strutture' in Bergamo (Italy) based on 
three point bend tests of concrete specimens with different width band 
maximum particle size, Dmax [64] are also worthy of mentioning in terms of 
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dimensional analysis [65]. Figure 8.21 plots K[c values against the relative 
crack depth a/b. By assuming that KIC = 164.7 kg/cm312 , Dmax = 25 mm 
and 0u = 50.36 kg/cm2 , it is possible to obtain a brittleness number s = 0.82 
for Specimen 1 and s = 0.46 for Specimen 2. Analogously, by assuming 
KIC = 158.2kg/cm3i2 , Dmax = 120mm and au = 46.68kg/cm2 , s = 0.48 
is found for Specimen 3. The s number related to Specimen 1 is too high 
and therefore the reported KIC values are meaningless, since ultimate strength 
collapse would have first occurred. K[c does not appear to be a material 
constant but it reaches a maximum when the crack depth alb, is equal to 
about 0.20. Decreasing the brittleness number of Specimens 2 and 3, the 
curves tend to become flat. Therefore, KIC may be regarded as constant 
for increasingly larger intervals of the ratio a/b. The experimental values 
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Fig. 8.2l. Bell-shaped curves of fracture toughness versus relative crack depth according 
to the experimental data by Ferrara and Imperato [64]. 

pertaining to cracks of intermediate length are related to a crack propagation 
failure. A second report to R.I.L.E.M. 50-FMC Committee [66] contains 
additional results from six laboratories. The tests reported from the 'Istituto 
di Scienza delle Costruzioni' of the University of Bologna are very extensive, 
since they consist of seven different beam sizes, each with six different notch 
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Fig. 8.22. K 1C values versus beam depth plot obtained at the 'Instituto di Scienza delle 
Costruzioni' of the University of Bologna (Di Leo). 
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depths, and three tests for each type of specimen making a total of 126 
beams. The largest beam had a span of 2.5 m and a depth of 2 m. Only the 
smallest beams gave stable tests with a notch depth of 0.2 times the beam 
depth or more. The KIC values are shown in Figure 8.22 as functions of the 
beam depth. They increase for increasing beam depths. Mindess [67] has 
recently prepared an extensive bibliography with nearly 500 references on 
the fracture of concrete and a host of experimental data [68] . 

It should now be clear that a valid K1C value for concrete can be obtained 
only if the specimen size is prohibitively large. Smaller specimens, however, 
can be used for other materials such as mortar and cement paste. Concrete 
specimens are measurable in meters while cement paste specimens in centi­
meters. Brittle fracture therefore depends on scaling that is also a function 
of the heterogeneity of the material. Table 8.1 shows that strength au and 
toughness KIC may be regarded as independent properties. Their combination 
determines the brittleness of the material. 

8.3. Statistical strength variation 

Preliminary remarks. Strength is known to vary with specimen size, a 
phenomenon pointed out long ago by Weibull [69]. He used the weakest 
link concept for determining a critical imperfection in a given material, 
the size of which increases by increasing the volume. This is a simple model 
that does not account for details of the imperfections nor the constitutive 
relation of the material. J ayatilaka [70] and Freudenthal [71] considered 
a linear elastic material with a great number of embedded Griffith cracks 
and indicated that the variability of strength with specimen volume may be 
related to the probability density of crack size distribution. The strength 
size effect in structures with re-entrant corners was considered by Leicester 
[72] who included the effect of stress-singularity at the corner vertex. He 
showed that the strength size effect is due to the existence of one or more 
stress singularity sources in the body. These sources can arise from macro­
scopic notches or partially debonded interfaces. Bazant [73] also explained 
size effects in the brittle failure of concrete structures by application of 
Linear Elastic Fracture Mechanics and contrasted his results with those of 
Weibull. 

TABLE 8.1. 
Strength, toughness and brittleness of various materials. 

Concrete 
Aluminium alloy 
Plexiglass 
Glass 

Strength (MN/m 2 ) 

au = 3.57 
au = 500 
au = 33 
au = 170 

Toughness (MN/m 3i2 ) Brittleness (m~li2) 

K1C = 1.96 
K 1C = 100 
KIC = 5.5 
KIC = 0.25 

au/KIC = 1.8 
au/KIC = 5 
au/KIC = 6 
au/KIC = 680 
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The purpose of this section is to extend the work in [72] to an ideal 
material with a random distribution of microscopical cracks, voids or in­
clusions. These heterogeneities will be assumed to be of regular polygonal 
shape. Other irregular shapes may also be considered. The Ramberg-Osgood 
stress-strain relation with power hardening is employed. Interactions between 
the geometrical shape of the polygonal voids, the nonlinearity of the matrix 
and the nature of the probability density of heterogeneity size distribution 
are considered. The Weibull modulus depends on the angle 1" formed by the 
sides of the polygonal void, the exponent n in the Ramberg-Osgood relation, 
and the degree of the cumulative distribution function related to the defect 
size, N. The results show that the empirical Weibull assumption has a precise 
physical meaning in terms of physical defects in the material. 

Structures with a dominant defect. Consider a two-dimensional linear 
elastic structure with an edge crack, Figure 8.23(a). Based on the results in 
[16] , the symmetrical stress field around the crack tip can be described by 

(8.32) 

where K is the stress-intensity factor and r, O· are the radial and angular 
coordinates, respectively. In general, the K-factor can be expressed as [74]: 

(8.33) 

where a is the nominal stress, b is a characteristic size of the structure, f1 is 
a shape-factor depending on the geometry of structure and on the crack size 
a. The stress at failure at is reached when the K-factor is equal to its critical 
value, Kc: 

(8.34) 

Taking the logarithms of both sides of equation (8.34) gives 

lnaf = [lnKc -lnfl(alb)] -~ lnb (8.35) 

which takes the general form 

(8.36) 

with A being a function that depends on the structure geometry, material and 
crack depth. Consider a set of geometrically similar structures, Figure 8.23 (a). 
The strength lnaf is a linearly decreasing function with a slope of -1/2, 
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Fig. 8.23. Geometrically similar bodies with a dominant defect: opening crack (a), mixed 
mode crack (b), re-entrant corner (c) and polygonal cavity (d). 

Figure 8.24(a). This means that if b -+ 00, then In b tends to + 00 and In af 

tends to - 00 since a f -+ 0+. If b -+ 0+ with In b tending to - 00, then In a f 
tends to + 00 as af -+ + 00. The horizontal line 

(8.37) 

represents the strength limit for b -+ 0+ in Figure 8.24(a). As already 
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rig. 8.24. Bi-logarithmic strength versus size diagram: interaction between ultimate 
strength collapse and crack propagation (a); attenuation of the strength decrease when 
the re-entrant corner angle increases (b). 

mentioned, small size structure tends to fail by collapse rather than crack 
propagation. 

Under a mixed- mode loading, Figure 8.23 (b), the crack tip stress field 
takes the form 

2 

I K k y-1!2 FD(IJ) (8.38) 
k=l 

where K k (k = 1, 2) are the stress-intensity factors related to Mode I (opening) 
and Mode II (sliding) crack extension, respectively. As for the case of equation 
(8.33), they can be written as 

k = 1,2 (8.39) 

A combination of Kk (k = 1,2) is required to describe incipient fracture 
[75] : 

(8.40) 
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An elliptic function H may be used [76] : 

(8.41) 

where q (q ;:;. 0) is a measure of the influence of Mode II crack extension. 
Inserting equation (8.39) in equation (8.41), it follows that 

(8.42) 

A failure stress can thus be defined by equation (8.34) with 

1= vIr + q/t (8.43) 

Note that a straight line relation with a slope of - 1/2 in the plane In af -In b 
still holds in mixed mode, Figure 8.24(a). The geometry of the crack, structure 
and load do not seem to come into play. 

Consider now a two-dimensional linear elastic structure with a reentrant 
corner of angle 'Y, Figure 8.23(c). Williams [77] showed that when both 
notch surfaces are stress free, the symmetrical stress field at the notch tip is 

a·· = K*r-CXF('Y)«(}) 
IJ IJ (8.44) 

where the power a of the stress-singularity ranges from 1/2 ('Y = 0) to 0 
('Y = 7T) as illustrated in Figure 8.25. If dimensional analysis is applied, an 
equation analogous to equation (8.33) may be found: 

(8.45) 

When the angle 'Y vanishes, equation (8.45) coincides with equation (8.33). 
When 'Y = 7T, the stress-singularity disappears and the stress-intensity coefficient 
K * assumes the physical dimensions of a stress and becomes proportional 
to the nominal stress a. Leicester [72] showed that the failure stress af 
corresponds to K * becoming critical, i.e., 

(8.46) 

In the logarithmic form, equation (8.46) is 

In a = B (K * !!..) - a In b f c'b (8.4 7) 

in which 
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Fig. 8.25. Stress-singularity power versus re-entrant corner angle. 

(8.48) 

For a set of geometrically similar structures, Figure 8.23(c), the strength 
In at is a linear decreasing function of In b with a slope of - a: as shown in 
Figure 8.24(b). When 'Y -+ 1T or a: -+ 0, the scale effect disappears and the 
straight line becomes horizontal. In this case, the equilibrium condition 
becomes 

ab = K*(b -a) 
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Fig. 8.26. Size effect on bending strength of timber beams with re-entrant corners [72]. 
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(8.50) 

When the notch depth alb tends to zero, the shape-functiongl(a/b) = 1. The 
stress-intensity coefficient K* coincides with the nominal stress a as shown 
in equation (8.45). Experimental confirmations of the above concept are 
given in Figure 8.26 by Leicester [72] who tested geometrically similar 
timber beams with reentrant corners. Size effects of the type described above 
were observed. The rate of decrease in stength coincides with that predicted 
in Figure 8.25. 

Consider a two-dimensional linear elastic structure with a polygonal void 
of regular shape and arbitrary number of sides M, Figure 8.23(d). The angle 
'Y is a function of the number of sides,M, i.e., 

(M-2) 'Y=1T--
M 

(8.51) 

Every reentrant corner of the polygonal void is subjected to a mixed mode 
loading condition with a stress-singularity r-C!. For a given external load, 
there is a corner tip which is subjected to the most severe stress field. If the 
load is increased progressively, the fracture condition will first be achieved 
at this tip. According to equation (8.47), the intercept is 

(8.52) 

The In a, versus In b diagram is linear with a slope - a for the case of poly­
gonal cavity. M = 2 corresponds to a crack with 'Y = O. For M = 00, the 
polygonal cavity becomes a circular hole as equation (8.51) gives 'Y = 1T. In 
the latter case, the size effect vanishes and the In a, versus In b line becomes 
horizontal. 

Structures with many imperfections. Two-dimensional structures with a 
multitude of cracks, voids or inclusions of a given size-distribution will be 
considered. The two assumptions made are 

(l) the structure is macroscopically homogeneous and isotropic and 

(2) the interaction between the imperfections is negligible. 

A set of geometrically similar structures containing many cracks and/or 
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Fig. 8.27. Geometrically similar bodies with many random defects: constant defect size 
(a); defect size constant and proportional to the body size (b); defect size distribution 
of proportionality (c). 

polygonal cavities of constant size a are considered, Figure 8.27 (a). They may 
be regarded as specimens made of the same material. Their failure will be 
associated with imperfections oriented at a critical position. Figure 8.27 (b) 
considers a set of geometrically similar structures, where the size of the 
imperfections is constant and proportional to the structural size. In this case, 
they cannot be considered as specimens of the same material. The strength 
size effect is represented by the In at versus In b line with slope - ex. If the 
imperfections were of the same size, but with different shape (e.g., cracks 
and circular pores), the fracture condition must then be evaluated only for 
those with the maximum value for ex (0";; ex";; 1/2). For imperfections with 
the most dangerous shape (ex = exmax) in Figure 8.27(c), the probability 
density pea) of size distribution is given in Figure 8.28(a). It can thus be said 
that if the size distribution pea) is such that the maximum size amax is 
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proportional to the linear scale b, then the strength size effect is represented 
by the In at versus In b line diagram with a slope of -Qmax' The above 
statement is somewhat restrictive and is valid only when the probability 
density of size distribution pea) possesses particular properties. If p is the 
density of the imperfections (number of imperfections per unit area), then 
the maximum size amax can be defined as 

2 1 
pb p(amax) - I:.a 1:.(3 

27T 
(8.53a) 

The factor (l/27T) pertains to all imperfections orientated at the angle (3 which 
are alike. If a geometrically similar structure of characteristic size kb is 
considered, there results 

(8.53b) 

Since amax is a function of p, b, I:.a and 1:.(3, it follows that equations (8.53) 
must be valid for any defect size a, i.e., 

(8.54a) 
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From equations (8.54), it follows that 

Hence, p assumes the form 

C 
pea) = "2, Va ~ a 

a 

(8.54b) 

(8.55) 

(8.56) 

where C is a constant with the physical dimension of a length and a is the 
mean defect size. Equation (8.56) will be referred to as the defect size distri­
bution of proportionality. The related cumulative distribution function P 1S 

fa fa. fa C pea) = p(x)dx = p(x)dx + 2" dx 
o 0 a. X 

(8.57) 

where ao (ao ~ a) is the value beyond which the decreasing branch of function 
p can be approximated by equation (8.56). From equation (8.57), it is found 
that 

[ cla c c pea) = Po + - - = Po + - - -
X a. ao a 

For a ~ 00, the cumulative distribution pea) ~ 1 and 

C 
Po +- = 1 

ao 

From equations (8.58) and (8.59) it follows 

C 
pea) = 1--, 

a 

such that 

c = (1 -Po)ao 

fora> ao 

(8.58) 

(8.59) 

(8.60) 

(8.61 ) 

Generally speaking, the cumulative distribution function, P, can have the 
following form 
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C 
I-­

til' 

c = (I-Po)a~ 
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fora> ao (8.62) 

(8.63) 

In this case, the strength size effect can be represented by the In a, versus 
In b line with a slope - So, i.e., 

so(r, N) (8.64) 

where the exponent Wo depends on the density of imperfections, size distri­
bution of the less dangerous defects, etc. The probability density of size 
distribution in the general case can be obtained from equation (8.62) as 

dP C 
pea) = da = N til + l' fora> ao (8.65) 

which reduces to equation (8.56) when N = 1. 
Up to this point, only cracks and cavities have been considered. Similar 

considerations can also be given to the case of inclusions. The probability 
density p and the cumulative distribution P may depend on the inclusion 
size with partial debonding, Figure 8.29. This assumption is realistic for 
concrete where cracks due to internal dessication and shrinkage occur, 
particularly for large aggregates [52]. In the case of circular inclusion~ 

(78] , the strength size effect is represented by the In a, versus In b line with 
a slope of -lj(2NW o). The above model applies only to the size effects 
related to the first microcracking. In order to study the subsequent stages 
of material degradation, the stochastic process theory should probably be 

matnx 

t 
Fig. 8.29. Debonding cracks at the interface between matrix and aggregate. 
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applied despite Hatano's [79] claim that it does not apply to concrete. 
The power hardening Ramberg-Osgood material with the stress-strain 

relation 

l";;n<oo (8.66) 

may also be applied to study the state of affairs near a reentrant corner with 
angle r. Hutchinson [80], and Rice and Rosengren [81] gave the stress­
singularity* at the crack tip for this material as 

n + 1 
(8.67) 

with A as the exponent of " i.e., ,-A. When n = 1, the linear elastic behavior 
A = 1/2 is recovered. When n ~ 00 and A ~ 0, a rigid-perfectly plastic material 
is obtained. The stress-singularity then vanishes and the plastic stress-intensity 
coefficient attains the physical dimensions of stress [5]. This limit case is 
analogous to a reentrant angle with r ~ 1f in linear elasticity. For r > 0 and 
n > 1, the symmetrical stress-field at the corner tip may be described as 

in which the power So is given by 

So(1', n) 
1 

2a(r)-­
n + 1 

The function so(r, n) is given in Figure 8.30. 

(8.68) 

(8.69) 

Extending the single crack analysis given above to the case of many defects 
of a given size distribution in nonlinear materials, the strength size effect 
can be represented by the In Of versus In b line with a slope of - So. From 
equations (8.64) and (8.69), it is found that 

(8.70) 

Equation (8.70) shows that size effect vanishes when r = 1f (circular pores), 
and/or when n ~ 00 (rigid-perfectly plastic material), and/or when N ~ 00 

This result was based on the assumption that macro-plasticity occurs uniformly 
around the crack tip which is not always consistent with experimental observation. 
Hence, care must be exercised in not over-extending the application of the work in 

[80,81]. 
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Fig. 8.30. Stress-singularity power as a function of re-entrant corner angle "y and material 
hardening exponent n. 

(nearly constant defect size). On the other hand, the size effect becomes 
enormous when N -+ 0 (very large dispersion in the imperfection size distri­
bution). Owing to the form of equation (8.70), size effect can be annuled 
by proper combination of the angle 'Y, the hardening exponent, n, and the 
degree of defect size dispersion, N. 

The two-dimensional treatment can be extended to three-dimensional 
structures with polyhedral cavities. Equation (8.70) can be generalized as 

2a(Q) 
so(Q, n, N) = (n + l)(N -1)wo (8.71) 

-in which (N - 1) instead of N has been written because equations (8.54) 
in three-dimensions yield 

and hence 

pea) 
c 

C 
Pea) = 1- 2a2 

(8.72) 

(8.73a) 

(8.73b) 

prevail for sufficiently large a. Here, Q represents a reentrant solid angle and 
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not its amplitude. A knowledge of the singular stress fields near a three­
dimensional reentrant corner is, of course, required. 

Weibull parameters. Many past investigations have applied equations (2.44) 
and (2.45) to study the implications of the Weibull theory in order to establish 
the relation between the Weibull modulus m and the shape of the defects, 
ductility of the material and dispersion of the defect size. Jayatilaka 
[70] and Freudenthal [71] used the model of cracks embedded in a linear 
elastic material to determine the Weibull modulus, m. Jayatilaka [70] found 
m to be a function of the degree N of the defect size cumulative distribution: 

m = 2N (8.74) 

Freudenthal [71] found m to be a function of the coefficient of variation 
Cv of the defect size probability density: 

2 
(8.75) 

By casting equation (2.43) into a logarithmic form 

(8.76) 

and invoking the assumption of geometric similarity in two-dimensions, i.e., 
bodies with similar shape and constant thickness as shown in Figure 8.31, 
the result 

(8.77) 

is obtained such that 

kb kb' 
·1 I. -I 

Fig. 8.31. Bodies with similar shape and constant thickness. 
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(8.78) 

(8.79) 

Equations (8.78) and (8.79) can be compared with equations (8.80) and 
(8.81) for N = 1: 

_ (am a x ) In of = B K~'-b- -solnb (8.80) 

B (K* amax ) = In K~ 
C , b v' gt + q£g~ (8.81) 

It follows that 

m = 2/so (8.82) 

(8.83) 

Equations (8.82) and (8.83) offer an interpretation of the Weibull parameters 
m and 00. Making use of equation (8.70), equation (8.82) gives 

m (8.84) 

When N = 1, a minimum value of m = 4 is obtained. For glass, m ~ 2 which 
means that N < 1. The crack size distribution therefore presents a large 
dispersion. 

Experimental results. According to equation (8.70), the In af versus In b 
line relationship should fit the experimental data with a negative slope of 
- so. When the dispersion of the imperfection size distribution is not very 
high, say N;;;;' 1, the theoretical upper bound So ~ 0.50 is obtained which has 
rarely been exceeded by the available experimental data. 
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Fig. 8.32. Effect of size on bending strength of timber beams [82]. 

Figure 8.32 shows a typical size effect of this kind plotted from the data 
of Comben [82] for the bending strength of unnotched timber beams. For 
So = 0.10, the defect shape is not very sharp and the defect size distribution 
has a small dispersion. A similar size effect is found in the yield stress of 
mild steel, which may be interpreted as the onset of micro fracture. An 
example is given in Figure 8.33 [83]. The results by Strange and Bryant 
[48] are plotted in Figure 8.34. The flexural tensile strength decayed linearly 
with the beam width on the logarithmic scale for all four cementitious 
composites. Sabnis and Mirza [84] showed the same trend in Figure 8.35. 
The results obtained from the Brazilian test are in agreement, Figure 8.36. 
In the case of compressive strength [84], the decrease becomes bilinear, 
Figure 8.37. The "weakest link concept" may not be appropriate for analyzing 
the compressive failure of concrete where damage occurs in a progressive 
manner. 

By regarding heterogeneity as imperfections, it is also possible to explain 
the effects of grain size on the tension strength of magnesium alloys at low 
temperatures [85] . Refer to the results in Figure 8.38. 
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Fig, 8.33. Size effect on the yield stress of mild steel beams [83]. 
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Fig. 8.36. Size effect on indirect tensile strength of concrete [84]. 

8.4. Simplified models 

This section is concerned with a review of past works that utilize criteria 
such as localized strain, fictitious crack length, etc., for modeling the failure 
of specialized problems. Although these models are limited in application, 
they can be useful to explain the difference between local and global crack 
instability. 
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Fig. 8.37. Size effect on compressive strength of concrete [84] . 



www.manaraa.com

217 

50 

.~ 
so= 0.37 

~ 

I' 20 
f-
(:J 

Z 
w 
cr: 
f- lO (fJ 

w C magnesium alloy 
..J 

in 0 magnesium z 
w 
f- 5 

0.02 0.05 0.1 0.2 0.5 1.0 

MEAN GRAIN DIAMETER, mm 

Fig, 8.38. Effect of grain size on tension strength of magnesium and magnesium alloy 
[85]. 

Localized strain. The concept of maximum localized strain is perhaps 
one of the most popular failure criteria simply because of its famili­
arity associated with the uniaxial test. The idea that damage is concentrated 
to a small material volume leading to eventual fracture has been suggested in 
[86]. The localization of strain in direct tensile tests on concrete was also 
given by Heilmann, Hilsdorf and Finsterwalder [87]. Their test results are 
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Fig. 8.39. Localization of strain in direct tensile test (a) and local strains as functions 
of the mean strain of the specimen (b) [87] . 
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shown in Figure 8.39. Strain gauges were glued at different positions on a 
600 mm long concrete specimen with a cross-sectional area of 80 x 150 mm2 , 

Figure 8.39 (a). The load was eccentrically applied so that it was possible to 
produce stable fracture. In Figure 8.39(a), the position of the final crack is 
shown. In Figure 8.39(b), the local strains are shown as functions of the 
mean strain of the specimen. The local strains are separated into two groups: 
one for the cross-section where the final crack develops (gauges 2-3) and the 
other for the material outside the position of the final crack (gauges 1, 4-9). 
As it can be seen from Figure 8.39(b), the strain measured by the gauges 
monitoring the final crack increases rapidly from the moment the maximum 
stress is reached. At the same time, the strain outside the fracture zone 
decreases. This implies that the fracture zone is localized in a very narrow 
band across the specimen. 

As the width of the fracture zone in the loaded direction is relatively 
small, the fracture zone may be replaced by a narrow slit of width w [86] as 
shown in Figure 8.40. The total deformation of the specimen t::.l then becomes: 

t::.l = €ol + w (8.85) 

where €o is the strain in the material outside the fracture zone and I is the 
specimen length. From equation (8.85), it follows that the mean strain €m 

is given by 

t::.l W 
€o+­

I 
(8.86) 

After the maximum stress is reached, the elongation of the fracture zone 
affects the mean strain and hence the stress-strain curve of concrete may 
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Fig. 8.40. Fracture zone represented as a narrow slit of width w. 
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lal Ibl 

Fig. 8.41. Stress versus strain relation for the undamaged material outside the fracture 
zone (a) and stress as a function of fracture zone width (b). 

depend on the specimen length. For this reason, Hillerborg, Modeer and 
Petersson [86] avoided using stress-strain curve as a material property. 
Instead, they proposed to use the stress and strain relation for the undamaged 
material outside the fracture zone in Figure 8.41 (a) and that of stress as a 
function of fracture zone width in Figure 8.41 (b). 

It is important to note that the strain localization does not imply the 
change from a a versus 13 to a a versus w relation as suggested by Hillerborg, 
Modeer and Petersson [86]. Rice [88,89] pointed out that strain localization 
results from a low hardening modulus or a softening behavior in the a versus 13 

relation. Also, Bazant and Oh [90], considered the fracture zone concept 
and used a finite width Wo at the beginning of the loading process. They 
regarded Wo as a material property and related it to a characteristic dimension 
Dmax of the aggregates with Wo ~ 3Dmax . In this case, equation (8.85) 
becomes 

(8.87) 

where €d is the strain in the damage zone that increases monotonically with 
load, while 130 decreases after reaching the ultimate stress au' At fracture, 
equation (8.85) gives 

(8.88) 

whereas equation (8.87) yields 

(8.89) 

From equations (8.88) and (8.89), the expression 

(8.90) 



www.manaraa.com

220 

prevails that relates the critical crack opening displacement we to the fracture 
strain €f and characteristic crack band width Woo 

Cohesive force model. The three point bend specimen analyzed in chapter 
3 is again considered, Figure 3.1. The material possesses ultimate tensile 
strength au = 31.90 kg/cm2, Young's modulus, E = 365,000 kg/cm2, Poisson 
ratio, v = 0.1 and fracture energy, GF = 0.05 kg/cm. These values correspond 
to Material 3 in Figure 2.29. The critical parameters for determining the onset 
of rapid crack propagation were the strain energy density factor Se = 8 x 10-3 

kg/cm and the fracture energy GF that are related as 

(8.91) 

The damage model presented in chapter 2 requires an additional material 
constant, the fracture strain €f, that is related to the critical crack opening 
displacement We and the crack band width Wo through equation (8.90). 
Recalling from Figure 2.23 that 

(8.92) 

the crack band width is thus obtained: 

(8.93) 

Using equation (8.91), equation (8.93) becomes 

Wo (8.94) 
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Fig. 8.42. Load-deflection curves for different initial crack depths: GF = 0.05 kg/em 
(a) and GF = 0.01 kg/em (b). 
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Equation (8.94) establishes the relation between the strain energy density 
theory [12) and crack band theory [90). In the present case, Wo = 6.47 cm 
which corresponds to about three times the aggregate size since Dmax ~ 2 cm. 

The load·deflection curves are displayed in Figure 8.42(a) for different 
initial crack depths and using the cohesive crack model [91). The stiffness 
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Fig. 8.43. Bifurcation of the global equilibrium. 
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Fig. 8.44. Load versus crack mouth opening displacement. 
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and loading capacity of the specimen decrease with increasing initial crack 
depth. The load-deflection curves in Figure 8.42(b) pertain to GF = 0.01 kg! 
cm. For small crack depths with ao/b ::S 0.2, bifurcation occurs. A softening 
branch corresponding to dP/do > 0 is obtained which could be defined as 
'stable' according to the Drucker's Postulate. If the loading process is control­
led by the deflection, the P versus 0 curve will show a discontinuity in its 
loading capacity with global instability. 

The catastrophic softening such as the third branch of the curve in 
Figure 8.43 is controlled by the crack mouth opening displacement WI. As it 
is shown in Figure 8.44, the crack mouth opening displacement increases 
while the load P and the beam deflection 0 decrease. 

The nondimensional load-deflection curves are represented in Figure 8.45 
for ao / b = j and different values of the nondimensional number 

GF We ( ) s - - - - 8.95 
E - aub - 2b 

which can be related to the brittleness number s when using a Dugdale type 
of cohesive model. * When the fracture energy G F is very high as in fibre 
reinforced concrete, or when the beam size b is very small, the structural 
behavior is ductile. The opposite also holds. 

• I • .1 (a) 

(b) 

T 

: °u 
1 
• 
I au 

i (e) 

Fig. 8.46. Process zone at the crack tip of a concrete-like material (a). Damage zone 
ahead of the stress-free crack tip (b). Cohesive force distribution behind the fictitious 
crack tip (c). 

* Recalling thatKIC =.JCFE, the relation is: sE =S:EU' 
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Damage vs. cohesive force model. The process zone at the crack tip of a 
concrete-like material can be simulated in two ways as shown in Figures 
8.46: 

(1) with a damage zone ahead of the stress-free crack tip, Figure 8.46(b), and 
(2) with a cohesive force distribution behind the fictitious crack tip, Figure 

8.46: 

The damage model requires an additional parameter, the fracture strain €f. 

Displayed in Figure 8.47 are the load-deflection curves for the beam in Figure 
3.1. The damage model is seen to be sensitive to the variation in the fracture 
strain €f while the cohesive model does not contain this parameter. For 
average values of €f, however, the cohesive model solution is in agreement 
with that of the damage model, Figure 8.47. 

Figure 8.48 displays the variations of Pg~x/P~!x with I /S2, where s is the 
brittleness number. The maximum load computed from the damage or 
cohesive force model is Pg!x while p~!x corresponds to that predicted from 
Linear Elastic Fracture Mechanics. The two extreme failure modes of ligament 
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collapse and brittle fracture are thus connected by a smooth curve that 
accounts for the interaction of structure geometry, material type, loading 
step, etc. The results based on the cohesive force model are somewhat limited 
because it is based on a more simplified criterion of critical strain. One of the 
most serious limitations is the independency of load history effect which is 
an inherent feature of the material damage process. 

Further insights into the bifurcation prediction [92-94] can be made. 
A failure parameter €F for the tensile specimen in Figure 8.40 can be obtained 
from equation (8.89): 

(8.96) 

When 1-+ Wo, €F -+ €f and the softening behavior of the damage zone is 
reproduced by the specimen, Figure 8.49(a). For increasing specimen lengths 
I, the global softening behavior becomes more and more pronounced until 
the limit 

10 (8.97) 

is reached which gives simply a vertical drop, Figure 8.49(b). Then, as 1 in­
creases the global softening behavior becomes catastrophic with da/d€ > O. 
When 1-+ 00, €F -+ 0 and the global softening branch tends to coincide with 
the rising portion of the a versus € curve, Figure 8.49(c). In conclusion, for 
Wo ,.;; 1 ,.;; 10 , the softening behavior is unstable according to the Drucker's 
Postulate. For I> 10 , the softening behavior is even catastrophic and a strain­
controlled loading process would produce a drop in the a versus € curve as in 
the case of 1 = 10 in Figure 8.49(b). 
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